نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد شیلات، گرایش فرآوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 دانشیار، گروه شیلات، گروه فراوری محصولات شیلاتی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

در این پژوهش روغن ماهی و ویتامین E با استفاده از مواد پلیمری ژلاتین و صمغ عربی به‌عنوان مواد دیواره و با کمک روش کوآسرواسیون ترکیبی با روش سطح پاسخ (RSM) در قالب طرح مرکب مرکزی (CCD) ریزپوشانی و بهینه‌سازی شدند. اثر سه متغیر مستقل میزان روغن ماهی (1، 3 و 5 درصد)، میزان بیوپلیمر کل (1، 3 و 5 درصد) و سرعت هموژنایزر (11000، 9000 و 7000 دور در دقیقه) بر متغیرهای وابسته ازقبیل روغن سطحی، روغن پوشینه‌شده، کارایی ریزپوشانی و اندازۀ ذرات بررسی شد. نتایج به‌دست‌آمده نشان داد سرعت هموژنایزر 7000 دور در دقیقه برای تولید نانوذرات با ابعاد کمتر از 100 نانومتر مناسب نمی‌باشد. به‌علاوه، پارامترهای درصد روغن ماهی و سرعت هموژنایزر بر اندازۀ نانوپوشینه‌های تولیدی مؤثر می‌باشند. همچنین نانوپوشینه‌های تولیدی در تیمارهایی که در آنها از درصد بیشتری روغن استفاده شد در مقایسه با تیمارهای با درصد روغن کمتر از روغن سطحی بیشتری برخوردار بودند. میزان کارایی ریزپوشانی بین 56/29 تا 98/76 درصد اندازه‌گیری شد.در این پژوهش تیمار بهینه با مقادیر 1 درصد روغن ماهی، 1 درصد بیوپلیمر کل و سرعت هموژنایزر 7000 دور در دقیقه معرفی گردید که میزان کارایی ریزپوشانی آن 97/97 درصد ثبت گردید.

کلیدواژه‌ها

Alipour, A., Kocheki, A., Kadkhoda i, R., & Varidi, M. (2015). The effect of Alyssum homolocarpum seed gum–whey protein concentrate on stability of oil–in–water emulsion. Food Science and Technology, 12(48), 163-174. (in Persian)

Arab-Tehrany, E., Jacquot, M., Gaiani, C., Imran, M., Desobry, S., & Linder, M. (2012). Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends in Food Science & Technology, 25(1), 24-33. doi:https://doi.org/10.1016/j.tifs.2011.12.002

Aziz, S., Gill, J., Dutilleul, P., Neufeld, R., & Kermasha, S. (2014). Microencapsulation of krill oil using complex coacervation. Journal of Microencapsulation, 31(8), 774-784. doi:https://doi.org/10.3109/02652048.2014.932028

Azizanbari, C., Ghanbarzadeh, B., Hamishekar, h., & Hosseini, M. (2013). Gelan-Caseinate Nanocomplexes as Carriers of Omega-3 Fatty Acids: investigation of Particle Size, Rheology and Encapsulation Efficiency. Journal of Technology and Food Preservation, 5(2), 19-42 (in Persian).

Bahrani, S., Mohammad Hasani, Z., Ghanbarzadeh, B., & Hamishekar, H. (2013, October). Investigating the effect of pH on particle size, stability and capsulation efficiency of bio polymer nano-complexes of casein-pectin containing omega-3. Paper presented at the 21st National Congress of Food Science and Technology, Shiraz University. (in Persian). http://www.civilica.com/Paper-NCFOODI21-NCFOODI21_926

Chang, P.-S., Lee, J., & Lee, J. L. J. (2005). Development of a new colorimetric method determining the yield of microencapsulation of α-tocopherol. Journal of Agricultural and Food Chemistry, 53(19), 7385-7389. doi:https://doi.org/10.1021/jf051015p

Choi, M.-J., Ruktanonchai, U., Min, S.-G., Chun, J.-Y., & Soottitantawat, A. (2010). Physical characteristics of fish oil encapsulated by β-cyclodextrin using an aggregation method or polycaprolactone using an emulsion–diffusion method. Food Chemistry, 119(4), 1694-1703. doi:https://doi.org/10.1016/j.foodchem.2009.09.052

García-Moreno, P. J., Guadix, A., Guadix, E. M., & Jacobsen, C. (2016). Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chemistry, 203, 124-135. doi:https://doi.org/10.1016/j.foodchem.2016.02.073

Garg, M., Wood, L., Singh, H., & Moughan, P. (2006). Means of delivering recommended levels of long chain n‐3 polyunsaturated fatty acids in human diets. Journal of Food Science, 71(5), R66-R71. doi:https://doi.org/10.1111/j.1750-3841.2006.00033.x

Ghorbani Hassan Sariei, A., Shahidi, F., Bahadorghousi, H., & Motamedzadegan, A. (2012, October). Potentials of different omega-3 fatty acids in food enrichments. Paper presented at the 2nd Food Security Conference, Islamic Azad University, Savadkuh Branch. (in Persian) https://www.civilica.com/Paper-FSS02-FSS02_320.html

Hogan, S. A., McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (2001). Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. International Dairy Journal, 11(3), 137-144. doi:https://doi.org/10.1016/S0958-6946(01)00091-7

Hosseini, S., Sadeghi-Mahoonak, A., Jafari, S. m., Ghorbani, M., & Salimi, A. (2016). Optimization of Emulsion of Orange Skin Oil - Mucilage of Grain by Using RSM and Investigating the Stability of obtained microencapsulated Powder. Journal of Food Science & Technology, 13(59), 171-180 (in Persian).

Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. doi:https://doi.org/10.1016/j.carbpol.2013.02.031

Jafari, S. M., Assadpoor, E., Bhandari, B., & He, Y. (2008). Nano-particle encapsulation of fish oil by spray drying. Food Research International, 41(2), 172-183. doi:https://doi.org/10.1016/j.foodres.2007.11.002

Jafarpour, S. A., Esfahani, R., & Jafari, S. M. (2016). Efficiency evaluation of nanoencapsulation of omega-3 fatty acids with gelatin-Arabic gum complex using coaservation technique. Scientefic Journal of Iranian Fisheries, 25(2), 29-42 (in Persian).

Karaca, A. C., Nickerson, M., & Low, N. H. (2013). Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 139(1-4), 448-457. doi:https://doi.org/10.1016/j.foodchem.2013.01.040

Kaushik, P., Dowling, K., Barrow, C. J., & Adhikari, B. (2015). Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. Journal of Functional Foods, 19, 868-881. doi:https://doi.org/10.1016/j.jff.2014.06.029

Klinkesorn, U., Sophanodora, P., Chinachoti, P., Decker, E. A., & McClements, D. J. (2006). Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Research International, 39(4), 449-457. doi:https://doi.org/10.1016/j.foodres.2005.09.008

Lin, C.-Y., & Lin, B.-Y. (2015). Fatty acid characteristics of isochrysis galbana lipids extracted using a microwave-assisted method. Energies, 8(2), 1154-1165. doi:https://doi.org/10.3390/en8021154

Liu, S., Low, N., & Nickerson, M. T. (2010). Entrapment of flaxseed oil within gelatin-gum arabic capsules. Journal of the American Oil Chemists' Society, 87(7), 809-815. doi:https://doi.org/10.1007/s11746-010-1560-7

Mehrad, B., Shabanpour, B., Jafari, S. M., & Pourashouri, P. (2015). Characterization of dried fish oil from Menhaden encapsulated by spray drying. Aquaculture, Aquarium, Conservation & Legislation, 8(1), 57-69.

Mohammadzadeh, H., Koocheki, A., Kadkhodaee, R., & Razavi, S. M. (2013). Physical and flow properties of d-limonene-in-water emulsions stabilized with whey protein concentrate and wild sage (Salvia macrosiphon) seed gum. Food Research International, 53(1), 312-318. doi:https://doi.org/10.1016/j.foodres.2013.04.028

Pourashouri, p. (2012). Evaluation of the physicochemical and oxidative stability of microcapsules containing oil fish and omega-3. (Unpublished doctoral dissertation), Sari University of Agricultural Sciences and Natural Resources (in Persian),

Sharifi, A. (2016). Microcapsulations of fish oil and clove oil via coaservation method by using gelatin of fish and gum Arabic. (Unpublished master's thesis), Sari University of Agricultural Sciences and Natural Resources, (in Persian)

Wang, B., Adhikari, B., & Barrow, C. J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chemistry, 158, 358-365. doi:https://doi.org/10.1016/j.foodchem.2014.02.135

Xiao, Z., Liu, W., Zhu, G., Zhou, R., & Niu, Y. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour and Fragrance Journal, 29(3), 166-172. doi:https://doi.org/10.1002/ffj.3192

Zhang, K., Zhang, H., Hu, X., Bao, S., & Huang, H. (2012). Synthesis and release studies of microalgal oil-containing microcapsules prepared by complex coacervation. Colloids and Surfaces B: Biointerfaces, 89, 61-66. doi:https://doi.org/10.1016/j.colsurfb.2011.08.023

Zhang, Z.-Q., Pan, C.-H., & Chung, D. (2011). Tannic acid cross-linked gelatin–gum arabic coacervate microspheres for sustained release of allyl isothiocyanate: Characterization and in vitro release study. Food Research International, 44(4), 1000-1007. doi:https://doi.org/10.1016/j.foodres.2011.02.044

Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. In Zuidam. N., & Nedovic. V. (Eds.), Encapsulation technologies for active food ingredients and food processing (pp. 3-29): Springer, New York, NY.