Investigation of Oleogel Properties Prepared by Pickering Emulsion-Templated Stabilized with Solid Particles of Basil Seed Gum and Isolated Soy Protein as a Fat Substitute in Cream

Document Type : Original Paper

Authors

1 PhD. Graduated, Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

2 Assistant Professor, Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

3 Assistant Professor, Department of Food Nanotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

According to the multiple role of fat in food products, it is necessary to use a substance as a substitute of fat to maintain the rheological, texture and sensory characteristics of low-fat products. In this study, oleogel system was applied to produce low-fat product. Pickering emulsion-templated was applied to produce oleogels. Isolated soy protein (ISP) and basil seed gum (ISP-BSG) were used for the preparation of Pickering. ISP-BSG particles were prepared with different mass ratios of ISP-BSG, 1:0, 1:1, 2:1 and 3:1 and named 1S:0B, 1S:1B, 2S:1B and 3S:1B, respectively. The type and structure of the Pickering used affected the amount of oil retention in the oleogel (p < /em><0.05). The presence of basil seed gum in a suitable ratio with protein (2S:1B) caused a more stable oleogel, higher mechanical strength, and more compact network. Finally, the oleogels were prepared with better oil bonding capacity. The highest and lowest thermal stability rates were for the 2S:1B and 1S:1B samples, respectively. The highest and lowest consistency levels were observed in 2S:1B and 1S: 0B samples, respectively (p < /em><0.05). Investigation of the viscoelastic properties confirmed the gel formation in the oleogel system. According to the stability and textural properties of oleogel samples, two formulas 1S:0B and 2S:1B were used to produce cream with reduced fat (5, 10 and 15%). The highest overall acceptance was obtained in the 2S:1B sample with a 5% reduction in fat, which had no significant difference with control cream.

Keywords

Ayed, C., Martins, S. I., Williamson, A. M., & Guichard, E. (2018). Understanding fat, proteins and saliva impact on aroma release from flavoured ice creams. Food chemistry, 267, 132-139. doi:https://doi.org/10.1016/j.foodchem.2017.10.127
Dassanayake, L. S. K., Kodali, D. R., & Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Current Opinion in Colloid & Interface Science, 16(5), 432-439. doi:https://doi.org/10.1016/j.cocis.2011.05.005
De Vries, A., Hendriks, J., Van Der Linden, E., & Scholten, E. (2015). Protein oleogels from protein hydrogels via a stepwise solvent exchange route. Langmuir, 31(51), 13850-13859. doi:https://doi.org/10.1021/acs.langmuir.5b03993
Farahnaky, A., Safari, Z., Ahmadi Gorji, F., & Mesbahi, G. (2011). Use of gelatin as a fat replacer for low fat cream production. Iranian Journal of Food Science and Technology, 8(32), 45-52. (in Persian)
Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A., & Rush, J. W. (2009). Potential food applications of edible oil organogels. Trends in Food Science & Technology, 20(10), 470-480. doi:https://doi.org/10.1016/j.tifs.2009.06.002
Jimenez-Colmenero, F., Salcedo-Sandoval, L., Bou, R., Cofrades, S., Herrero, A. M., & Ruiz-Capillas, C. (2015). Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends in Food Science & Technology, 44(2), 177-188. doi:https://doi.org/10.1016/j.tifs.2015.04.011
Katsiari, M., Voutsinas, L., Kondyli, E., & Alichanidis, E. (2002). Flavour enhancement of low-fat Feta-type cheese using a commercial adjunct culture. Food chemistry, 79(2), 193-198. doi:https://doi.org/10.1016/S0308-8146(02)00131-0
Kavas, G., Oysun, G., Kinik, O., & Uysal, H. (2004). Effect of some fat replacers on chemical, physical and sensory attributes of low-fat white pickled cheese. Food chemistry, 88(3), 381-388. doi:https://doi.org/10.1016/j.foodchem.2004.01.054
Kuhn, K. R., Cavallieri, Â. L. F., & Da Cunha, R. L. (2010). Cold‐set whey protein gels induced by calcium or sodium salt addition. International journal of food science & technology, 45(2), 348-357. doi:https://doi.org/10.1111/j.1365-2621.2009.02145.x
Linke, C., & Drusch, S. (2018). Pickering emulsions in foods-opportunities and limitations. Critical reviews in food science and nutrition, 58(12), 1971-1985. doi:https://doi.org/10.1080/10408398.2017.1290578
Liu, H., Xu, X., & Guo, S. D. (2007). Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT-Food Science and Technology, 40(6), 946-954. doi:https://doi.org/10.1016/j.lwt.2006.11.007
Manzocco, L., Valoppi, F., Calligaris, S., Andreatta, F., Spilimbergo, S., & Nicoli, M. C. (2017). Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food hydrocolloids, 71, 68-75. doi:https://doi.org/10.1016/j.foodhyd.2017.04.021
Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food hydrocolloids, 77, 17-29. doi:https://doi.org/10.1016/j.foodhyd.2017.09.006
Naji-Tabasi, S., Mahdian, E., Arianfar, A., & Naji-Tabasi, S. (2019). Nanoparticles fabrication of soy protein isolate and basil seed gum (Ocimum bacilicum L.) complex as pickering stabilizers in emulsions. Journal of Dispersion Science and Technology, 1-8. doi:https://doi.org/10.1080/01932691.2019.1703736
O'Sullivan, C. M., Barbut, S., & Marangoni, A. G. (2016). Edible oleogels for the oral delivery of lipid soluble molecules: composition and structural design considerations. Trends in Food Science & Technology, 57, 59-73. doi:https://doi.org/10.1016/j.tifs.2016.08.018
Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. Food & function, 7(1), 20-29. doi:https://doi.org/10.1039/C5FO01006C
Patel, A. R., Rajarethinem, P. S., Grędowska, A., Turhan, O., Lesaffer, A., De Vos, W. H., . . . Dewettinck, K. (2014). Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food & function, 5(4), 645-652. doi:https://doi.org/10.1039/C4FO00034J
Piraprez, G., Marie France Hérent, & Collin, S. (1998). Determination of the lipophilicity of aroma compounds by RPHPLC. Flavour and Fragrance Journal, 400-408.
Romeih, E. A., Michaelidou, A., Biliaderis, C. G., & Zerfiridis, G. K. (2002). Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: chemical, physical and sensory attributes. International Dairy Journal, 12(6), 525-540. doi:https://doi.org/10.1016/S0958-6946(02)00043-2
Sampaio, G. R., Castellucci, C. M., e Silva, M. E. M. P., & Torres, E. A. (2004). Effect of fat replacers on the nutritive value and acceptability of beef frankfurters. Journal of Food Composition and Analysis, 17(3-4), 469-474. doi:https://doi.org/10.1016/j.jfca.2004.03.016
Zetzl, A. K., Marangoni, A. G., & Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food & function, 3(3), 327-337. doi:https://doi.org/10.1039/C2FO10202A
 Zhu, X.-F., Zhang, N., Lin, W.-F., & Tang, C.-H. (2017). Freeze-thaw stability of pickering emulsions stabilized by soy and whey protein particles. Food hydrocolloids, 69, 173-184. doi:https://doi.org/10.1016/j.foodhyd.2017.02.001
CAPTCHA Image
Volume 9, Issue 3
October 2020
Pages 269-282
  • Receive Date: 03 May 2020
  • Revise Date: 13 June 2020
  • Accept Date: 03 July 2020