Investigation the Rheological Properties of Nanofiber Gel Prepared from Tomato Pomace as a Function of Concentration

Document Type : Original Paper

Authors

1 Associate Professor, Department of Food Science and Technology, Sari Agriculture Sciences and Natural Resources University, Sari, Iran

2 PhD. Student, Department of Food Science and Technology, Sari Agriculture Sciences and Natural Resources University, Sari, Iran

3 Associate Professor, Department of Wood Technology and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

In the current study, the nanofiber gel of tomato pomace was prepared using a super disk grinder device available at Nano Novin Polymer Co., Iran. Three different concentrations (2, 4 and 6%) of the gel prepared and rheological tests including amplitude sweep, frequency sweep, temperature sweep, and flow behavior were done. DLS results showed that the average diameter of tomato nano-gel was around 38 nm. The power law model was chosen as the best model for describing flow behavior data. All samples showed a shear-thinning behavior that viscosity decreased with increasing shear rate. A hysteresis loop was observed in all samples which confirmed the thixotropic characteristic of gels. Based on amplitude sweep data, elastic modulus (G') was higher than viscous modulus (G"), in addition, crossover points of all gels showed that the flowability decreased with increasing concentrations. Based on frequency data, G' in all concentrations was higher than G" and both parameters increased with increasing concentration from 2 to 6%. In lower frequencies, all gels showed solid-like behavior while G' and G" increased with increasing frequency indicating the weakening of the gel network. G' and G" gradually decreased with increasing temperature from 5 to 50 ºC which confirmed that all gels were weakened at high temperatures, but in the cooling cycle, all gels recovered their structures and no remarkable hysteresis was observed.

Keywords

Abu-Jdayil, B., Banat, F., Jumah, R., Al-Asheh, S., & Hammad, S. (2004). A comparative study of rheological characteristics of tomato paste and tomato powder solutions. International Journal of Food Properties, 7(3), 483-497. doi:https://doi.org/10.1081/JFP-200032940
Adewale, P., & Christopher, L. P. (2017). Thermal and rheological properties of crude tall oil for use in biodiesel production. Processes, 5(4), 59. doi:https://doi.org/10.3390/pr5040059
Aliniyay Lakani, S., Afra, E., & Yousefi, H. (2016). Studying the effect of pulp refining and paper pressing and using nano fibrillated cellulose to improve the CMP pulp properties. Iranian journal of Wood and Paper Science Research, 31(2), 224-236. doi:https://doi.org/10.22092/IJWPR.2016.105770 (in Persian)
Altan, A., McCarthy, K. L., & Maskan, M. (2008). Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. Journal of Food Engineering, 84(2), 231-242. doi:https://doi.org/10.1016/j.jfoodeng.2007.05.014
Alvarado, A., Pacheco-Delahaye, E., & Hevia, P. (2001). Value of a tomato byproduct as a source of dietary fiber in rats. Plant Foods for Human Nutrition, 56(4), 335-348. doi:https://doi.org/10.1023/A:1011855316778
Amin, M. C. I. M., Abadi, A. G., & Katas, H. (2014). Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydrate Polymers, 99, 180-189. doi:https://doi.org/10.1016/j.carbpol.2013.08.041
Balaghi, S., Mohammadifar, M. A., Zargaraan, A., Gavlighi, H. A., & Mohammadi, M. (2011). Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Hydrocolloids, 25(7), 1775-1784. doi:https://doi.org/10.1016/j.foodhyd.2011.04.003
Bayod, E., Willers, E. P., & Tornberg, E. (2008). Rheological and structural characterization of tomato paste and its influence on the quality of ketchup. LWT-Food Science and Technology, 41(7), 1289-1300. doi:https://doi.org/10.1016/j.lwt.2007.08.011
Behrouzian, F., Razavi, S. M., & Alghooneh, A. (2017). Evaluation of interactions of biopolymers using dynamic rheological measurements: Effect of temperature and blend ratios. Journal of Applied Polymer Science, 134(5). doi:https://doi.org/10.1002/app.44414
Belović, M., Pajić-Lijaković, I., Torbica, A., Mastilović, J., & Pećinar, I. (2016). The influence of concentration and temperature on the viscoelastic properties of tomato pomace dispersions. Food Hydrocolloids, 61, 617-624. doi:https://doi.org/10.1016/j.foodhyd.2016.06.021
Botineştean, C., Gruia, A. T., & Jianu, I. (2015). Utilization of seeds from tomato processing wastes as raw material for oil production. Journal of Material Cycles and Waste Management, 17(1), 118-124. doi:https://doi.org/10.1007/s10163-014-0231-4
Casas, J. A., Mohedano, A. F., & García‐Ochoa, F. (2000). Viscosity of guar gum and xanthan/guar gum mixture solutions. Journal of the Science of Food and Agriculture, 80(12), 1722-1727. doi:https://doi.org/10.1002/1097-0010(20000915)80:123.0.CO;2-X
Del Valle, M., Cámara, M., & Torija, M. (2002, September). Effect of pomace addition on tomato paste quality. Paper presented at the VIII International Symposium on the Processing Tomato 613.
do Nascimento, G. E., Simas-Tosin, F. F., Iacomini, M., Gorin, P. A. J., & Cordeiro, L. M. (2016). Rheological behavior of high methoxyl pectin from the pulp of tamarillo fruit (Solanum betaceum). Carbohydrate Polymers, 139, 125-130. doi:https://doi.org/10.1016/j.carbpol.2015.11.067
Everett, D. W., & McLeod, R. E. (2005). Interactions of polysaccharide stabilisers with casein aggregates in stirred skim-milk yoghurt. International Dairy Journal, 15(11), 1175-1183. doi:https://doi.org/10.1016/j.idairyj.2004.12.004
Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food chemistry, 198, 93-100. doi:https://doi.org/10.1016/j.foodchem.2015.11.095
Herrera, P. G., Sánchez-Mata, M., & Cámara, M. (2010). Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innovative Food Science & Emerging Technologies, 11(4), 707-711. doi:https://doi.org/10.1016/j.ifset.2010.07.005
Hesarinejad, M. A., Koocheki, A., & Razavi, S. M. A. (2014). Dynamic rheological properties of Lepidium perfoliatum seed gum: Effect of concentration, temperature and heating/cooling rate. Food Hydrocolloids, 35, 583-589. doi:https://doi.org/10.1016/j.foodhyd.2013.07.017
Karataş, M., & Arslan, N. J. F. H. (2016). Flow behaviours of cellulose and carboxymethyl cellulose from grapefruit peel. 58, 235-245. doi:https://doi.org/10.1016/j.foodhyd.2016.02.035
Kaur, D., Wani, A. A., Oberoi, D., & Sogi, D. (2008). Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food chemistry, 108(2), 711-718. doi:https://doi.org/10.1016/j.foodchem.2007.11.002
Khiari, Z., Rico, D., Martin-Diana, A. B., & Barry-Ryan, C. (2017). Valorization of fish by-products: Rheological, textural and microstructural properties of mackerel skin gelatins. Journal of Material Cycles and Waste Management, 19(1), 180-191. doi:https://doi.org/10.1007/s10163-015-0399-2
Knoblich, M., Anderson, B., & Latshaw, D. (2005). Analyses of tomato peel and seed byproducts and their use as a source of carotenoids. Journal of the Science of Food and Agriculture, 85(7), 1166-1170. doi:https://doi.org/10.1002/jsfa.2091
Koubala, B. B., Kansci, G., Garnier, C., Mbome, I. L., Durand, S., Thibault, J. F., & Ralet, M. C. (2009). Rheological and high gelling properties of mango (Mangifera indica) and ambarella (Spondias cytherea) peel pectins. International journal of food science & technology, 44(9), 1809-1817. doi:https://doi.org/10.1111/j.1365-2621.2009.02003.x
Lapasin, R., & Pricl, S. (1995). The polysaccharides: sources and structures Rheology of Industrial Polysaccharides: Theory and Applications (pp. 1-133): Springer.
Mahfouzi, M., Koocheki, A., & Razavi, S. (2017). Effect of freezing on functional properties of Lepidium perfoliatum seed gum. Iranian Food Science and Technology Research Journal, 13(2), 24-250. doi:https://doi.org/10.22067/ifstrj.v1395i0.49167 (in Persian)
Majzoobi, M., Ghavi, F. S., Farahnaky, A., Jamalian, J., & Mesbahi, G. (2011). Effect of tomato pomace powder on the physicochemical properties of flat bread (Barbari bread). Journal of Food Processing and Preservation, 35(2), 247-256. doi:https://doi.org/10.1111/j.1745-4549.2009.00447.x
Mewis, J. (1979). Thixotropy-a general review. Journal of Non-Newtonian Fluid Mechanics, 6(1), 1-20. doi:https://doi.org/10.1016/0377-0257(79)87001-9
Motamedzadegan, A., Omidbakhsh Amiri, E., Jamshidi, M., & Khosravi Rad, T. (2018). Effect of concentration on the rheological and physicochemical properties of lemon juice. Iranian Food Science and Technology Research Journal, 14(1), 119-131. doi:https://doi.org/10.22067/ifstrj.v1396i0.59409 (in Persian)
Moubarik, A. (2015). Rheology study of sugar cane bagasse lignin-added phenol–formaldehyde adhesives. The Journal of Adhesion, 91(5), 347-355. doi:https://doi.org/10.1080/00218464.2014.903803
Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2018). The effects of Plantago major seed gum on steady and dynamic oscillatory shear rheology of sunflower oil‐in‐water emulsions. Journal of Texture Studies, 49(5), 536-547. doi:https://doi.org/10.1111/jtxs.12352
Ouden, F. d., & Vliet, T. v. (2002). Effect of concentration on the rheology and serum separation of tomato suspensions. Journal of Texture Studies, 33(2), 91-104. doi:https://doi.org/10.1111/j.1745-4603.2002.tb01337.x
Rafe, A., Razavi, S. M., & Farhoosh, R. (2013). Rheology and microstructure of basil seed gum and β-lactoglobulin mixed gels. Food Hydrocolloids, 30(1), 134-142. doi:https://doi.org/10.1016/j.foodhyd.2012.05.016
Razi, S. M., Motamedzadegan, A., Shahidi, A., & Rashidinejad, A. (2018). The effect of basil seed gum (BSG) on the rheological and physicochemical properties of heat-induced egg albumin gels. Food Hydrocolloids, 82, 268-277. doi:https://doi.org/10.1016/j.foodhyd.2018.01.013
Rha, C.-K. (2012). Theory, determination and control of physical properties of food materials (Vol. 1): Springer Science & Business Media.
Rigby, B. (1968). Amino-acid composition and thermal stability of the skin collagen of the Antarctic ice-fish. Nature, 219(5150), 166-167. doi:https://doi.org/10.1038/219166a0
Savadkoohi, S., Hoogenkamp, H., Shamsi, K., & Farahnaky, A. (2014). Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. Meat science, 97(4), 410-418. doi:https://doi.org/10.1016/j.meatsci.2014.03.017
Schieber, A., Stintzing, F. C., & Carle, R. (2001). By-products of plant food processing as a source of functional compounds—recent developments. Trends in Food Science & Technology, 12(11), 401-413. doi:https://doi.org/10.1016/S0924-2244(02)00012-2
Shakiba, S., Khomeiri, M., Amiri, S., & Rezaei, R. (2017). Effect of xanthan gum and Ispharzeh and Basil seeds mucilage on the viscoelastic behavior of ketchup sauce. Electronic Journal of Food Processing and Preservation, 9(2), 85-100. doi:https://doi.org/10.22069/EJFPP.2018.13445.1438 (in Persian)
Sharma, S., LeMaguer, M., Liptay, A., & Poysa, V. (1996). Effect of composition on the rheological properties of tomato thin pulp. Food research international, 29(2), 175-179. doi:https://doi.org/10.1016/0963-9969(96)00010-5
Silva, Y., Borba, B., Reis, M., Caliari, M., & Ferreira, T. (2016, October). Tomato industrial waste as potential source of nutrients. Paper presented at the International Technical Symposium Food: The Tree That Sustains Life.
Toor, R. K., & Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food research international, 38(5), 487-494. doi:https://doi.org/10.1016/j.foodres.2004.10.016
Torbica, A., Belović, M., Mastilović, J., Kevrešan, Ž., Pestorić, M., Škrobot, D., & Hadnađev, T. D. (2016). Nutritional, rheological, and sensory evaluation of tomato ketchup with increased content of natural fibres made from fresh tomato pomace. Food and bioproducts processing, 98, 299-309. doi:https://doi.org/10.1016/j.fbp.2016.02.007
Westphal, A., Bauerfeind, J., Rohrer, C., & Böhm, V. (2014). Analytical characterisation of the seeds of two tomato varieties as a basis for recycling of waste materials in the food industry. European Food Research and Technology, 239(4), 613-620. doi:https://doi.org/10.1007/s00217-014-2257-1
Yoo, Y. J., & Um, I. C. (2013). Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology. Korea-Australia Rheology Journal, 25(2), 67-75. doi:https://doi.org/10.1007/s13367-013-0007-8
Yousefi, H., Azari, V., & Khazaeian, A. (2018). Direct mechanical production of wood nanofibers from raw wood microparticles with no chemical treatment. Industrial crops and products, 115, 26-31. doi:https://doi.org/10.1016/j.indcrop.2018.02.020 (in Persian)
CAPTCHA Image
Volume 9, Issue 3
October 2020
Pages 295-306
  • Receive Date: 27 February 2020
  • Revise Date: 16 June 2020
  • Accept Date: 01 August 2020