Evaluation of Survival of Lactobacillus plantarum Capsulated in Synbiotic Suspension under Simulated Gastrointestinal Conditions

Document Type : Original Paper

Authors

1 MSc. Student, Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

2 Assistant Professor, Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

Abstract

Nowadays due to the role of nutrition in public health, as well as the use of probiotic bacteria that exposed to acute conditions of food processes and the gastrointestinal tract, is always one of the concerns of researchers in food and pharmaceutical sciences. Therefore, probiotics has been proven as a new technique for the tolerability of food samples coated with biopolymers in beneficial emulsions under gastric and intestinal simulation conditions. In this study, three formulations were prepared for microcoating suspension (a combination of whey protein concentrate, inulin and Persian gum in the range of 14 to 14.3 g per 100 mL). The results showed that microcoating efficiency, resistance to acid and alkali stress and viscosity evaluation, microscopic properties and finally the release rate synthesis, the second formulation (8.5, 5.5 and 0.2 g for whey protein concentrate, inulin and Persian gum, respectively) was considered as a suitable matrix, in the following, the durability characteristics during two months were evaluated at two temperature levels of 25 and 40 °C. The effect of shelf life caused a decrease in the population of Lactobacillus plantarum at two temperatures, which was much more severe at a temperature of 40 °C than the ambient temperature. The results of capsule microparticle images obtained by scanning electron microscopy showed that the surface of properties and the effect of wall compositions on the microstructures of the particles at two different temperatures were different. According to the results, the temperature of 40 °C had a much higher surface shrinkage compared to the small particles of the capsule stored at room temperature.

Keywords

Abedfar, A., Adibpour, N., & Hosseini Nezhad, M. (2018). The survivability comparison of microencapsulated Lactobacillus plantarum (S2G and A7) in different biopolymer matrices in simulated gastrointestinal tract during storage time. Applied Microbiology in Food Industry, 4(3), 36-49. (in Persian)
Altamirano-Fortoul, R., Moreno-Terrazas, R., Quezada-Gallo, A., & Rosell, C. M. (2012). Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocolloids, 29(1), 166-174. doi:https://doi.org/10.1016/j.foodhyd.2012.02.015
Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International dairy journal, 15(4), 399-409. doi:https://doi.org/10.1016/j.idairyj.2004.08.004
Bagheri, H., Graili, Z., & Kashaninezhad, M. (2015). Evaluation rheological of Qudomeh shahri a function of concentration and freezing procces and compare it’s with commercial Xanthan gum. Innovative Food Technologies, 3(1), 33-42. doi:https://doi.org/10.22104/jift.2015.228 (in Persian)
Botelho, G., Canas, S., & Lameiras, J. (2017). Development of phenolic compounds encapsulation techniques as a major challenge for food industry and for health and nutrition fields. In Nutrient Delivery (pp. 535-586): Elsevier.
Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of food engineering, 104(4), 467-483. doi:https://doi.org/10.1016/j.jfoodeng.2010.12.031
Charteris, W., Kelly, P., Morelli, L., & Collins, J. (1998). Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. Journal of applied microbiology, 84(5), 759-768.
Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & del Carmen Villarán, M. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International journal of food microbiology, 142(1-2), 185-189. doi:https://doi.org/10.1016/j.ijfoodmicro.2010.06.022
Ghahramanifar, A., Mohamadi Sani, A., Najaf Najafi, M., & Ghahramanifar, M. (2010). The effect of emulsion properties on the powder characteristics produced with encapsulation process. Innovation In Food Science And Technology (Journal Of Food Science And Technology), 2(2(5)), 45-54. (in Persian)
He, Y., Wu, Z., Tu, L., Han, Y., Zhang, G., & Li, C. (2015). Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science, 109-110, 68-75. doi:https://doi.org/10.1016/j.clay.2015.02.001
Homayouni, A., Azizi, A., Ehsani, M., Yarmand, M., & Razavi, S. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food chemistry, 111(1), 50-55. doi:https://doi.org/10.1016/j.foodchem.2008.03.036
Hosseininezhad, M., & Abedfar, A. (2018). A study on the qualitative characteristics and microbial survival of lactobacillus acidophilus and bacillus coagulans in probiotic bread. Research and Innovation in Food Science and Technology, 7(3), 337-352. doi:https://doi.org/10.22101/JRIFST.2018.10.20.738 (in Persian)
Huq, T., Khan, A., Khan, R. A., Riedl, B., & Lacroix, M. (2013). Encapsulation of probiotic bacteria in biopolymeric system. Critical reviews in food science and nutrition, 53(9), 909-916. doi:https://doi.org/10.1080/10408398.2011.573152
Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current issues in intestinal microbiology, 3(2), 39-48.
Khosravi Zanjani, M., Mohammadi, N., Ahari, H., Ghiassi Tarzi, B., & Bakhoda, H. (2014). Effect of microencapsulation with chitosan coating on survival of Lactobacillus casei and Bifidobacterium bifidum in ice cream. Iranian Journal of Nutrition Sciences & Food Technology, 8(4), 125-134. (in Persian)
Krasaekoopt, W., Bhandari, B., & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. International dairy journal, 13(1), 3-13. doi:https://doi.org/10.1016/S0958-6946(02)00155-3
Michida, H., Tamalampudi, S., Pandiella, S. S., Webb, C., Fukuda, H., & Kondo, A. (2006). Effect of cereal extracts and cereal fiber on viability of Lactobacillus plantarum under gastrointestinal tract conditions. Biochemical engineering journal, 28(1), 73-78. doi:https://doi.org/10.1016/j.bej.2005.09.004
Milani, E., Naeemi, H., Mortazavi, S.A, & Koocheki, A. (2012). Influence of simulated gastrointestinal conditions on survivability of microencapsulated probiotic Lactobacillus casei in symbiotic frozen yogurt. Iranian Food Science & Technology Research Journal, 8(2), 190-199. doi:https://doi.org/10.22067/ifstrj.v8i2.17279 (in Persian)
Mohammadi, R., & Mortazavian, A. (2011). Technological aspects of prebiotics in probiotic fermented milks. Food Reviews International, 27(2), 192-212. doi:https://doi.org/10.1080/87559129.2010.535235
Mokarram, R., Mortazavi, S., Najafi, M. H., & Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), 1040-1045. doi:https://doi.org/10.1016/j.foodres.2009.04.023
Mortazavian, A., Azizi, A., Ehsani, M., Razavi, S., Mousavi, S., Sohrabvandi, S., & Reinheimer, J. (2008). Survival of encapsulated probiotic bacteria in Iranian yogurt drink (Doogh) after the product exposure to simulated gastrointestinal conditions. Milchwissenschaft, 63(4), 349-427.
Mortazavian, A., Razavi, S. H., Ehsani, M. R., & Sohrabvandi, S. (2007). Principles and methods of microencapsulation of probiotic microorganisms. Iranian Journal of Biotechnology, 5(1), 1-18.
Patel, P. J., Singh, S. K., Panaich, S., & Cardozo, L. (2014). The aging gut and the role of prebiotics, probiotics, and synbiotics: A review. Journal of Clinical Gerontology and Geriatrics, 5(1), 3-6. doi:https://doi.org/10.1016/j.jcgg.2013.08.003
Picot, A., & Lacroix, C. (2003). Optimization of dynamic loop mixer operating conditions for production of o/w emulsion for cell microencapsulation. Le Lait, 83(3), 237-250. doi:https://doi.org/10.1051/lait:2003013
Rosenberg, M., Kopelman, I., & Talmon, Y. (1990). Factors affecting retention in spray-drying microencapsulation of volatile materials. Journal of Agricultural and Food Chemistry, 38(5), 1288-1294. doi:https://doi.org/10.1021/jf00095a030
Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43(1), 111-117. doi:https://doi.org/10.1016/j.foodres.2009.09.010
Shi, L.-E., Li, Z.-H., Li, D.-T., Xu, M., Chen, H.-Y., Zhang, Z.-L., & Tang, Z.-X. (2013). Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. Journal of food engineering, 117(1), 99-104. doi:https://doi.org/10.1016/j.jfoodeng.2013.02.012
Shori, A. B. (2017). Microencapsulation improved probiotics survival during gastric transit. HAYATI journal of biosciences, 24(1), 1-5. doi:https://doi.org/10.1016/j.hjb.2016.12.008
Soottitantawat, A., Bigeard, F., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2005). Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innovative Food Science & Emerging Technologies, 6(1), 107-114. doi:https://doi.org/10.1016/j.ifset.2004.09.003
CAPTCHA Image
Volume 9, Issue 3
October 2020
Pages 323-338
  • Receive Date: 25 August 2020
  • Revise Date: 24 September 2020
  • Accept Date: 26 September 2020