Enrichment of Pomegranate Juice Pigments with Polymeric Resins and Preparation of its Powder by Spray Drying Method

Document Type : Original Paper

Authors

1 PhD. Student, Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran

2 Assistant Professor, Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran

3 Agriculture and Natural Resources Research Institute of Yazd Province, Yazd, Iran

Abstract

Pomegranate juice is a known natural source of anthocyanins, including the glycosidic derivatives of delphinidin, cyanidin, and pelargonidin. The use of resins in various industries has a long history and, in this study, resin was used to enrich anthocyanins in pomegranate juice. The anthocyanin pigment in pomegranate juice was isolated and purified by SEPLITE®LXA10 resin, and finally, the anthocyanin powder was obtained by spray drying with high quality and efficiency. The purity of enriched anthocyanins is above 90%, while the amount of pigment in pomegranate itself is 20% or less. The yield of the powder obtained from enriched anthocyanin was 89.6% and pomegranate juice was 21%. The proposed method led to enrichment of anthocyanins by resins and removal of unnecessary additives and increases the quality and intensity of natural dye obtained. Scanning electron microscopy (SEM) images of anthocyanin-enriched powder showed a uniform, spherical structure of particles that were of better quality than pomegranate juice powder. Particle sizes were between 1 and 6 μm with a spherical structure. Due to the high cost of anthocyanins, its use in the food industry and high imports into the country, we obtained a relatively pure anthocyanin pigment. Purification of anthocyanins from pomegranate juice is an economical method for producing natural red pigment and its uses in the cosmetics, health and food industries.

Keywords

Abdel-Aal, E.-S. M., Young, J. C., & Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of agricultural and food chemistry, 54(13), 4696-4704. doi:https://doi.org/10.1021/jf0606609
Aberoumand, A. (2011). A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World Journal of Dairy & Food Sciences, 6(1), 71-78.
Albert, N. W., Lewis, D. H., Zhang, H., Irving, L. J., Jameson, P. E., & Davies, K. M. (2009). Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of experimental botany, 60(7), 2191-2202. doi:https://doi.org/10.1093/jxb/erp097
Alighourchi, H., Barzegar, M., Sahari, M., & Abbasi, S. (2013). Effect of sonication on anthocyanins, total phenolic content, and antioxidant capacity of pomegranate juices. International Food Research Journal, 20(4).
Aziztaemeh, H., Kazemi, A., & Razavi, J. (2005). Pomegranate juice powder production. Food Science and Technology, 2(3), 59-65.  (in Persian)
Boo, H.-O., Hwang, S.-J., Bae, C.-S., Park, S.-H., Heo, B.-G., & Gorinstein, S. (2012). Extraction and characterization of some natural plant pigments. Industrial Crops and Products, 40, 129-135. doi:https://doi.org/10.1016/j.indcrop.2012.02.042
Borges, G., & Crozier, A. (2012). HPLC–PDA–MS fingerprinting to assess the authenticity of pomegranate beverages. Food chemistry, 135(3), 1863-1867. doi:https://doi.org/10.1016/j.foodchem.2012.05.108
Buran, T. J., Sandhu, A. K., Li, Z., Rock, C. R., Yang, W. W., & Gu, L. (2014). Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. Journal of Food Engineering, 128, 167-173. doi:https://doi.org/10.1016/j.jfoodeng.2013.12.029
Chandrasekhar, J., Madhusudhan, M., & Raghavarao, K. (2012). Extraction of anthocyanins from red cabbage and purification using adsorption. Food and bioproducts processing, 90(4), 615-623. doi:https://doi.org/10.1016/j.fbp.2012.07.004
Chen, Y., Zhang, W., Zhao, T., Li, F., Zhang, M., Li, J., . . . Wu, X. (2016). Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Food chemistry, 194, 712-722. doi:https://doi.org/10.1016/j.foodchem.2015.08.084
Cortez, R., Luna‐Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180-198. doi:https://doi.org/10.1111/1541-4337.12244
da Silva, F. L., Escribano-Bailón, M. T., Alonso, J. J. P., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (2007). Anthocyanin pigments in strawberry. LWT-Food Science and Technology, 40(2), 374-382. doi:https://doi.org/10.1016/j.lwt.2005.09.018
Esfandani Bozchaloyi, S., & Sheidai, M. (2018). Molecular diversity and genetic relationships among Geranium pusillum and G. pyrenaicum with inter simple sequence repeat (ISSR) regions. Caryologia, 71(4), 457-470. doi:https://doi.org/10.1080/00087114.2018.1503500
Horuz, E., Altan, A., & Maskan, M. (2012). Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technology, 30(7), 787-798. doi:https://doi.org/10.1080/07373937.2012.663434
Iran Ministry of Agriculture-Jahad. (2019). Agricultural Statistics, 2018. Retrieved from https://www.maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj3-1397-site.pdf (in Persian)
Jafari, S. M., Ghalenoei, M. G., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder technology, 311, 59-65. doi:https://doi.org/10.1016/j.powtec.2017.01.070
Kähkönen, M. P., Heinämäki, J., Ollilainen, V., & Heinonen, M. (2003). Berry anthocyanins: isolation, identification and antioxidant activities. Journal of the Science of Food and Agriculture, 83(14), 1403-1411. doi:https://doi.org/10.1002/jsfa.1511
Kamei, H., Kojima, T., Hasegawa, M., Koide, T., Umeda, T., Yukawa, T., & Terabe, K. (1995). Suppression of tumor cell growth by anthocyanins in vitro. Cancer Investigation, 13(6), 590-594. doi:https://doi.org/10.3109/07357909509024927
Kar, A., Mahato, D. K., Patel, A. S., & Bal, L. M. (2019). The encapsulation efficiency and physicochemical characteristics of anthocyanin from black carrot (Daucus carota Ssp. sativus) as affected by encapsulating materials. Current Agriculture Research Journal, 7(1), 26-36. doi:http://dx.doi.org/10.12944/CARJ.7.1.04
Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC international, 88(5), 1269-1278. doi:https://doi.org/10.1093/jaoac/88.5.1269
Lv, L., Tang, J., & Ho, C. T. (2008). Selection and optimisation of macroporous resin for separation of stilbene glycoside from Polygonum multiflorum Thunb. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(10), 1422-1427. doi:https://doi.org/10.1002/jctb.1964
Mahdavi, A., & Jafari, M. (2004). Microencapsulation of Anthocyanins by Spray Drying; a Review: Department of Food Materials and Process Design Engineering, University of ….
Netzel, M., Strass, G., Herbst, M., Dietrich, H., Bitsch, R., Bitsch, I., & Frank, T. (2005). The excretion and biological antioxidant activity of elderberry antioxidants in healthy humans. Food Research International, 38(8-9), 905-910. doi:https://doi.org/10.1016/j.foodres.2005.03.010
Özcan, T. (2004). Analysis of the fruit surfaces in Bupleurum L.(Umbelliferae) with SEM. Plant Systematics and Evolution, 247(1), 61-74. doi:https://doi.org/10.1007/s00606-004-0135-1
Pinelli, D., Molina Bacca, A. E., Kaushik, A., Basu, S., Nocentini, M., Bertin, L., & Frascari, D. (2016). Batch and continuous flow adsorption of phenolic compounds from olive mill wastewater: A comparison between nonionic and ion exchange resins. International Journal of Chemical Engineering, 2016. doi:https://doi.org/10.1155/2016/9349627
Russo, M., Fanali, C., Tripodo, G., Dugo, P., Muleo, R., Dugo, L., . . . Mondello, L. (2018). Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties. Analytical and bioanalytical chemistry, 410(15), 3507-3520. doi:https://doi.org/10.1007/s00216-018-0854-8
Shah, B., Tailor, R., & Shah, A. (2012). Equilibrium, kinetics, and breakthrough curve of phenol sorption on zeolitic material derived from BFA. Journal of dispersion science and technology, 33(1), 41-51. doi:https://doi.org/10.1080/01932691.2010.530079
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299, 152-178. doi:https://doi.org/10.1016/S0076-6879(99)99017-1
Thibado, S. P., Thornthwaite, J. T., Ballard, T. K., & Goodman, B. T. (2018). Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins. Molecular and clinical oncology, 8(2), 330-335. doi: https://doi.org/10.3892/mco.2017.1520
Todaro, A., Cimino, F., Rapisarda, P., Catalano, A. E., Barbagallo, R. N., & Spagna, G. (2009). Recovery of anthocyanins from eggplant peel. Food chemistry, 114(2), 434-439. doi:https://doi.org/10.1016/j.foodchem.2008.09.102
Viljanen, K., Kivikari, R., & Heinonen, M. (2004). Protein− lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. Journal of agricultural and food chemistry, 52(5), 1104-1111. doi:https://doi.org/10.1021/jf034785e
Wallace, T. C. (2011). Anthocyanins in cardiovascular disease. Advances in nutrition, 2(1), 1-7. doi:https://doi.org/10.3945/an.110.000042
Watson, M. A., Lea, J. M., & Bett‐Garber, K. L. (2017). Spray drying of pomegranate juice using maltodextrin/cyclodextrin blends as the wall material. Food science & nutrition, 5(3), 820-826. doi:https://doi.org/10.1002/fsn3.467
Xiong, Q., Zhang, Q., Zhang, D., Shi, Y., Jiang, C., & Shi, X. (2014). Preliminary separation and purification of resveratrol from extract of peanut (Arachis hypogaea) sprouts by macroporous adsorption resins. Food chemistry, 145, 1-7. doi:https://10.1016/j.foodchem.2013.07.140
CAPTCHA Image
Volume 10, Issue 1
June 2021
Pages 71-82
  • Receive Date: 02 February 2021
  • Revise Date: 27 April 2021
  • Accept Date: 27 April 2021