Experimental Investigation of Fish Fillet Drying Process using IR Radiation

Document Type : Original Paper

Authors

1 MSc. Student, Department of Chemical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Associate Professor, Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

3 Assistant Professor, Department of Chemical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

Abstract

The aim of this study was to use the Response Surface Method (RSM) model to design, test and optimize the drying process of fillets of common carp (Cyprinus carpio) using infrared radiation. The power of infrared radiation was 83, 104 and 125 watts and the power of the IR-lamp was 250 watts and its distance from the fish fillet was 5 cm. Pieces of fish fillets were weighed at intervals of 60, 120 and 180 min with a digital scale with an accuracy of 0.01 g. Radiation power (A) and irradiation time (B) were effective in reducing the amount of moisture and the effect of quadratic radiation power and irradiation time were significantly more effective in comparison with their linear effect in reducing the amount of moisture. However, the power of radiation played a more important role compared to the time of radiation. The drying rate of the fillets increased with lower irradiation time and higher irradiation power, so that the drying speed of the fillets improved in the minimum irradiation time (60 min) under high irradiation power. Effective moisture permeability was reduced at low irradiance and low radiation time. Based on central composite design models, treatment 2 with 125 watt power and time of 60 min (moisture of 1.32 g of water/g of sample weight, drying speed of 0.022 g water/g sample weight per minute and effective moisture permeability 1.25846E-007 m2/s) improved the shelf life of fish fillets.

Keywords

Ahmadi Ghavidelan, M., & Chayjan, R. (2017). Application of response surface methodology for optimization of hazelnut drying under infrared fluidized bed. Journal of Food Research, 26(4), 639-657. (in Persian)
Aidani, E., Haddad Khodaparast, M., & Kashaninejad, M. (2017). Characterization of Dried Kiwi by Infrared Systems and Process Modeling. Journal of Food Technology and Nutrition, 14(4(56)), 53-66. (in Persian)
Bchir, B., Besbes, S., Attia, H., & Blecker, C. (2009). Osmotic dehydration of pomegranate seeds: mass transfer kinetics and differential scanning calorimetry characterization. International Journal of Food Science & Technology, 44(11), 2208-2217. doi:https://doi.org/10.1111/j.1365-2621.2009.02061.x
Calin-Sanchez, A., Figiel, A., WojdyƂo, A., Szarycz, M., & Carbonell-Barrachina, A. A. (2014). Drying of garlic slices using convective pre-drying and vacuum-microwave finishing drying: kinetics, energy consumption, and quality studies. Food and Bioprocess Technology, 7(2), 398-408. doi:https://doi.org/10.1007/s11947-013-1062-3
Celma, A. R., Rojas, S., & Lopez-Rodriguez, F. (2008). Mathematical modelling of thin-layer infrared drying of wet olive husk. Chemical Engineering and Processing: Process Intensification, 47(9-10), 1810-1818. doi:https://doi.org/10.1016/j.cep.2007.10.003
Chayjan, R. A., & Fealekari, M. (2014). Optimization of convective drying process for Persian shallot using response surface method (RSM). Agricultural Engineering International: CIGR Journal, 16(2), 157-166.
Darvishi, H., Azadbakht, M., Rezaeiasl, A., & Farhang, A. (2013). Drying characteristics of sardine fish dried with microwave heating. Journal of the Saudi Society of Agricultural Sciences, 12(2), 121-127. doi:https://doi.org/10.1016/j.jssas.2012.09.002
Del Nobile, M. A., Conte, A., Scrocco, C., Brescia, I., Speranza, B., Sinigaglia, M., . . . Antonacci, D. (2009). A study on quality loss of minimally processed grapes as affected by film packaging. Postharvest Biology and Technology, 51(1), 21-26. doi:https://doi.org/10.1016/j.postharvbio.2008.06.004
Dongbang, W., & Matthujak, A. (2013). Anchovy drying using infrared radiation. American Journal of Applied Sciences, 10(4), 353-360.
Duan, Z.-h., Jiang, L.-n., Wang, J.-l., Yu, X.-y., & Wang, T. (2011). Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating. Food and Bioproducts processing, 89(4), 472-476. doi:https://doi.org/10.1016/j.fbp.2010.11.005
FAO. (2019). The state of food and agriculture 2019. Moving forward on food loss and waste reduction. Rome. Licence: CC BY-NC-SA 3.0 IGO.   Retrieved from https://creativecommons.org/licenses/by-nc-sa/3.0/igo)
Ganjeh, M., Jafari, S. M., & Ghaderi, S. (2016). Neuro-fuzzy and response surface modeling of osmotic dehydration of pomegranate arils. Iranian Journal of Biosystems Engineering, 47(2), 243-255. doi:https://doi.org/10.22059/ijbse.2016.58774 (in Persian)
Hafezi, N., Sheikhe Davoodi, M. J., & Sajjadieh, S. M. (2016). A Study of Drying Rate of Sliced Potatoes during Radiation-Vacuum Drying Process using Regression and Artificial Neural Network Models. Iranian Journal of Biosystems Engineering, 47(2), 279-289. doi:https://doi.org/10.22059/IJBSE.2016.58777 (in Persian)
Hebbar, U. H., & Ramesh, M. (2005). Optimisation of processing conditions for infrared drying of cashew kernels with testa. Journal of the Science of Food and Agriculture, 85(5), 865-871. doi:https://doi.org/10.1002/jsfa.2045
Ismail, O., & Kocabay, O. (2018). Infrared and microwave drying of rainbow trout: drying kinetics and modelling. Turkish Journal of Fisheries and Aquatic Sciences, 18(2), 259-266. doi:https://doi.org/10.4194/1303-2712-v18_2_05
Jafari, H., Kalantari, D., & Azadbakht, M. (2017). Semi-industrial continuous band microwave dryer for energy and exergy analyses, mathematical modeling of paddy drying and it's qualitative study. Energy, 138, 1016-1029. doi:https://doi.org/10.1016/j.energy.2017.07.111
Jafari, H., Kalantari, D., & Azadbakht, M. (2018). Energy consumption and qualitative evaluation of a continuous band microwave dryer for rice paddy drying. Energy, 142, 647-654. doi:https://doi.org/10.1016/j.energy.2017.10.065
Jain, D., & Pathare, P. B. (2007). Study the drying kinetics of open sun drying of fish. Journal of Food engineering, 78(4), 1315-1319. doi:https://doi.org/10.1016/j.jfoodeng.2005.12.044
Kim, B.-S., Oh, B.-J., Lee, J.-H., Yoon, Y. S., & Lee, H.-I. (2020). Effects of Various Drying Methods on Physicochemical Characteristics and Textural Features of Yellow Croaker (Larimichthys Polyactis). Foods, 9(2), 196. doi:https://doi.org/10.3390/foods9020196
Li, Y.-B., Cao, C.-W., & Liu, D.-Y. (1997). Simulation of recirculating circular grain dryer with tempering stage. Drying Technology, 15(1), 201-214. doi:https://doi.org/10.1080/07373939708917226
Manivannan, P., & Rajasimman, M. (2008). Osmotic dehydration of beetroot in salt solution: optimization of parameters through statistical experimental design. Int J Chem Biomol Eng, 1(4), 215-222.
Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food engineering, 44(2), 71-78. doi:https://doi.org/10.1016/S0260-8774(99)00167-3
Mundada, M., Hathan, B. S., & Maske, S. (2011). Mass transfer kinetics during osmotic dehydration of pomegranate arils. Journal of Food Science, 76(1), E31-E39. doi:https://doi.org/10.1111/j.1750-3841.2010.01921.x
Nowak, D., & Lewicki, P. P. (2004). Infrared drying of apple slices. Innovative Food Science & Emerging Technologies, 5(3), 353-360. doi:https://doi.org/10.1016/j.ifset.2004.03.003
Okos, M. R., Campanella, O., Narsimhan, G., Singh, R. K., & Weitnauer, A. C. (2006). Food dehydration. In D. R. Heldman & D. B. Lund (Eds.), Food Engineering (Second ed., pp. 601-744): CRC Press, Taylor & Francis Group.
Pan, Z., Khir, R., Godfrey, L. D., Lewis, R., Thompson, J. F., & Salim, A. (2008). Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality. Journal of Food engineering, 84(3), 469-479. doi:https://doi.org/10.1016/j.jfoodeng.2007.06.005
Pathare, P. B., & Sharma, G. (2006). Effective moisture diffusivity of onion slices undergoing infrared convective drying. Biosystems Engineering, 93(3), 285-291. doi:https://doi.org/10.1016/j.biosystemseng.2005.12.010
Salehi, F., Amirabadi, A. A., & Kashaninejad, M. (2017). Modeling of Eggplant Drying Process by Infrared System using Genetic Algorithm–Artificial Neural Network Method. Journal of Food Processing and Preservation, 9(1), 85-96. doi:https://doi.org/10.22069/ejfpp.2017.7859.1192 (in Persian)
Steinteld, A., & Segal, I. (1986). A simulation model for solar thin-layer drying process. Drying Technology, 4(4), 535-554. doi:https://doi.org/10.1080/07373938608916349
Traffano-Schiffo, M. V., Castro-Giráldez, M., Fito, P., & Balaguer, N. (2014). Thermodynamic model of meat drying by infrarred thermography. Journal of Food engineering, 128, 103-110. doi:https://doi.org/10.1016/j.jfoodeng.2013.12.024
Vieira, G. S., Pereira, L. M., & Hubinger, M. D. (2012). Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. International Journal of Food Science & Technology, 47(1), 132-140. doi:https://doi.org/10.1111/j.1365-2621.2011.02818.x
Xiao, H.-W., Pang, C.-L., Wang, L.-H., Bai, J.-W., Yang, W.-X., & Gao, Z.-J. (2010). Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering, 105(2), 233-240. doi:https://doi.org/10.1016/j.biosystemseng.2009.11.001
Yusefi, A., Dilmaghanian, S., Ziaforoughi, A., & Moezzi, M. (2018). Study on infrared drying kinetics of quince slices and modelling of drying process using genetic algorithm-artificial neural networks (GA-ANNs). Innovative Food Technologies, 6(2), 175-186. doi:https://doi.org/10.22104/jift.2018.2871.1694 (in Persian)
Zhao, C.-C., Jiang, G.-H., & Eun, J.-B. (2017). Optimization of drying process for squid-laver snack by a combined method of fuzzy synthetic and response surface methodology. Journal of Food Quality, 2017. doi:https://doi.org/10.1155/2017/9761356
CAPTCHA Image
Volume 10, Issue 1
June 2021
Pages 83-94
  • Receive Date: 08 February 2021
  • Revise Date: 25 April 2021
  • Accept Date: 30 April 2021