Study of the Effect of Phycocyanin Pigment on Physicochemical, Sensory, Microbial and Antioxidant Properties of Cheese

Document Type : Original Paper

Authors

1 Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Microbiology, Faculty of New Sciences and Technologies, Medical Sciences Branch, Islamic Azad University, Tehran, Iran

Abstract

Due to its unique role, phycocyanin pigment extracted from the cyanobacterium Spirulina platensis can play an important role in enriching traditional cheeses. In this study, the amount of protein, fat, ash, moisture, β-carotene and pH of fortified cheese with different concentrations of phycocyanin pigment were determined. In addition, the counting of bacteria was done along with the assessment of antioxidant properties. Also, gas chromatography-mass spectrometer GC-MS test was performed to identify volatile compounds during 1, 3, 7, 14 and 21 days. The results of tests showed that the amount of fat, moisture, pH and 1,1-diphenyl-2-picrylhydrazyl (DPPH) of fortified cheeses has decreased significantly compared to the control. Also, the amount of protein, β-carotene, ferric reducing assay power (FRAP) and nitric oxide trapping increased significantly compared to the control. Sensory evaluation had also significant increase in satisfaction, except for the sense of smell compared to the control. In addition, no signs of Escherichia coli and Staphylococcus aureus were found during different days. However, the presence of coliform bacteria was evident from 7 to 21 days in enriched and control cheeses. Also, the results of volatile compounds obtained from GC-MS test in control cheese and enriched cheese with 1% phycocyanin pigment show the presence of compounds with antimicrobial properties that played an important role in the shelf life and quality of cheese. It is hoped that the results of this study will be the basis for empowering the food industry in using pigments obtained from cyanobacteria.

Keywords

Main Subjects

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Academy of General Dentistry. (2013, June 5). Cheese may prevent cavities. ScienceDaily. Retrieved Retrieved June 1, 2023 from www.sciencedaily.com/releases/2013/06/130605130118.htm
Akalin, A., Unal, G., & Dalay, M. (2009). Influence of Spirulina platensis biomass on microbiological viability in traditional and probiotic yogurts during refrigerated storage. Italian Journal of Food Science, 21(3), 357-364.
Akbarmehr, J. (2003). A survery on the contamination of fresh white cheese produced in sarab city and rural area with brucella spp. Journal of Veterinary Research, 58(3), 203-206. https://jvr.ut.ac.ir/article_11905_a2cc5e5aa4684ee0739db66f3a9af50a.pdf
Alrubaie, G., Zaki, N. H., Al-Hashimi, A., & Khuyon, A. (2021). Antibacterial Effect of Spirulina platensis Extracts on the Viability of Bacterial Species Isolated form Acne Patients in Baghdad. Annals of the Romanian Society for Cell Biology, 3851-3859.
Anbarasan, V., Kumar, V. K., Kumar, P. S., & Venkatachalam, T. (2011). In vitro evaluation of antioxidant activity of blue green algae Spirulina platensis. International journal of pharmaceutical sciences and research, 2(10), 2616. https://doi.org/10.13040/IJPSR.0975-8232.2(10).2616-18
Ansarifard, F., Rajabi Islami, H., Shamsaie Mehrjan, M., & Soltani, M. (2018). Effects of Arthrospira platensis on growth, skin color and digestive enzymes of Koi, Cyprinus carpio [Orginal research papers]. Iranian Journal of Fisheries Sciences, 17(2), 381-393. http://dorl.net/dor/20.1001.1.15622916.2018.17.2.10.0 (in Persian)
Ao, C., Li, A., Elzaawely, A. A., Xuan, T. D., & Tawata, S. (2008). Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. extract. Food Control, 19(10), 940-948. https://doi.org/10.1016/j.foodcont.2007.09.007
AOAC. (1990). Protein (crude) in animal feed kajeldahl method (954.01 methods). In: Association of Official Analytical Chemists Inc., Arlington, VA, USA.
Aygun, O., Aslantas, O., & Oner, S. (2005). A survey on the microbiological quality of Carra, a traditional Turkish cheese. Journal of Food Engineering, 66(3), 401-404. https://doi.org/10.1016/j.jfoodeng.2004.04.013
Baniassadi, B., & Azhdari, A. (2017). Survey of the total microbial count and the rate of contamination to coliform, staphylococcus aureus and mold and yeast in traditional cheese in Birjand during 2015. Journal of Food Microbiology, 4(1), 29-37. https://jfm.shahrekord.iau.ir/article_654470_628c46e20f9f046128142968cd487145.pdf (in Persian)
Bao, J., Zhang, X., Zheng, J.-H., Ren, D.-F., & Lu, J. (2018). Mixed fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by random-centroid optimization. Food chemistry, 264, 64-72. https://doi.org/10.1016/j.foodchem.2018.05.027
Bchir, B., Jean-François, T., Rabetafika, H. N., & Blecker, C. (2018). Effect of pear apple and date fibres incorporation on the physico-chemical, sensory, nutritional characteristics and the acceptability of cereal bars. Food Sci Technol Int, 24(3), 198-208. https://doi.org/10.1177/1082013217742752
Beheshtipour, H., Mortazavian, A. M., Mohammadi, R., Sohrabvandi, S., & Khosravi-Darani, K. (2013). Supplementation of Spirulina platensis and Chlorella vulgaris Algae into Probiotic Fermented Milks. Comprehensive Reviews in Food Science and Food Safety, 12(2), 144-154. https://doi.org/10.1111/1541-4337.12004
Benali, T., Habbadi, K., Khabbach, A., Marmouzi, I., Zengin, G., Bouyahya, A., . . . Hammani, K. (2020). GC-MS Analysis, Antioxidant and Antimicrobial Activities of Achillea Odorata Subsp. Pectinata and Ruta Montana Essential Oils and Their Potential Use as Food Preservatives. Foods, 9(5). https://doi.org/10.3390/foods9050668
Bensehaila, S., Doumandji, A., Boutekrabt, L., Manafikhi, H., Peluso, I., Bensehaila, K., . . . Bensehaila, A. (2015). The nutritional quality of Spirulina platensis of Tamenrasset, Algeria. African Journal of Biotechnology, 14(19), 1649-1654.
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/https://doi.org/10.1006/abio.1996.0292
Beutin, L., Geier, D., Steinrück, H., Zimmermann, S., & Scheutz, F. (1993). Prevalence and some properties of verotoxin (Shiga-like toxin)-producing Escherichia coli in seven different species of healthy domestic animals. J Clin Microbiol, 31(9), 2483-2488. https://doi.org/10.1128/jcm.31.9.2483-2488.1993
Bosnea, L., Terpou, A., Pappa, E., Kondyli, E., Mataragas, M., Markou, G., & Katsaros, G. (2021). Incorporation of Spirulina platensis on Traditional Greek Soft Cheese with Respect to Its Nutritional and Sensory Perspectives. Proceedings, 70(1), 99. https://doi.org/10.3390/foods_2020-07600
Buhler, S., Riciputi, Y., Perretti, G., Caboni, M. F., Dossena, A., Sforza, S., & Tedeschi, T. (2020). Characterization of Defatted Products Obtained from the Parmigiano-Reggiano Manufacturing Chain: Determination of Peptides and Amino Acids Content and Study of the Digestibility and Bioactive Properties. Foods, 9(3). https://doi.org/10.3390/foods9030310
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Burt, S. A. (2007). Antibacterial activity of essential oils: potential applications in food. Utrecht University.
Busch, S. (2018, Novamber 21). Cheese & Vitamin B-12. Hearst Newspapers, a Division of Hearst Communication, Inc. https://www.weekand.com/healthy-living/article/cheese-vitamin-b12-18006691.php
Choki, K., Zangmo, S., & Norbu, P. T. (2021). Microbial quality of traditionally produced butter and cheese (datshi). Bhutan Journal of Animal Science, 5(1), 1-7.
Costanzo, N., Ceniti, C., Santoro, A., Clausi, M. T., & Casalinuovo, F. (2020). Foodborne Pathogen Assessment in Raw Milk Cheeses. International journal of food science, 2020, 3616713. https://doi.org/10.1155/2020/3616713
Cremonesi, P., Perez, G., Pisoni, G., Moroni, P., Morandi, S., Luzzana, M., . . . Castiglioni, B. (2007). Detection of enterotoxigenic Staphylococcus aureus isolates in raw milk cheese. Lett Appl Microbiol, 45(6), 586-591. https://doi.org/10.1111/j.1472-765X.2007.02231.x
Currie, A., Galanis, E., Chacon, P. A., Murray, R., Wilcott, L., Kirkby, P., . . . for the Investigative, T. (2018). Outbreak of Escherichia coli O157:H7 Infections Linked to Aged Raw Milk Gouda Cheese, Canada, 2013. Journal of Food Protection, 81(2), 325-331. https://doi.org/10.4315/0362-028X.JFP-17-283
da Fontoura Prates, D., Duarte, J. H., Vendruscolo, R. G., Wagner, R., Ballus, C. A., da Silva Oliveira, W., . . . Costa, J. A. V. (2020). Role of light emitting diode (LED) wavelengths on increase of protein productivity and free amino acid profile of Spirulina sp. cultures. Bioresour Technol, 306, 123184. https://doi.org/10.1016/j.biortech.2020.123184
Dagdelen, S., Bilenler, T., Durmaz, G., Gokbulut, I., Hayaloglu, A. A., & Karabulut, I. (2014). Volatile Composition, Antioxidant and Antimicrobial Activities of Herbal Plants Used in the Manufacture of Van Herby (OTLU) Cheese. Journal of Food Processing and Preservation, 38(4), 1716-1725. https://doi.org/10.1111/jfpp.12134
Devi, K. M., & Mehta, S. K. (2016). Antimicrobial activities of freshwater Cyanobacterium, Nostoc sp. from Tamdil Wetland of Mizoram, India: an identification of bioactive compounds by GC-MS. International Journal of Pharmaceutical Sciences and Research (IJPSR), 7(3), 1179-1191. https://doi.org/10.13040/IJPSR.0975-8232.7(3).1179-91
Donnelly, C. W. (1990). Concerns of Microbial Pathogens in Association with Dairy Foods. Journal of dairy Science, 73(6), 1656-1661. https://doi.org/10.3168/jds.S0022-0302(90)78838-8
Duan, Y., Tan, Z., Wang, Y., Li, Z., Li, Z., Qin, G., . . . Cai, Y. (2008). Identification and characterization of Lactic Acid Bacteria isolated from Tibetan Qula cheese. J Gen Appl Microbiol, 54(1), 51-60. https://doi.org/10.2323/jgam.54.51
EFSA, & ECDC. (2019). European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union one health 2018 zoonoses report. EFSa Journal, 17(12), e05926.
El Baz, F. K., Aboul-Enein, A. M., El-Baroty, G. S., Youssef, A., & Abdel-Baky, H. H. (2002). Accumulation of antioxidant vitamins in Dunaliella salina. Journal of Biological Sciences, 2(4), 220-223. https://doi.org/10.3923/jbs.2002.220.223
Ericsson, H. M., & Sherris, J. C. (1971). Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand B Microbiol Immunol, 217, Suppl 217:211+.
Fadaei, V., Mazinani, S., Khosravi-Darani, K., Eslami Moshkenani, A., & Mirzadeh, A. (2015). The effect of powdered Spirulina platensis biomass on some of physicochemical properties and sensory evaluation in probiotic Iranian white cheese containing powdered Mentha longifolia L. produced by ultrafiltration. Innovative Food Technologies, 2(3), 1-10. https://doi.org/10.22104/jift.2015.125 (in Persian)
Farghl, A., El-Sheekh, M. M., & Mousa, A. (2019). Extraction and characterization of antimicrobial active substance from cyanobacteria Nostoc carneum and Anabaena circinalis. Fresenius environmental bulletin, 28(7), 5481-5490.
Ghadiri Hakim, H., Jamali Behnam, Y., Hashemi, M., Miri Disfani, A., Torbati Moghaddam, M. R., & Afshari, A. (2021). Prevalence of Pathogenic Microorganisms in Traditional Dairy Products of Mashhad, Iran [Original Article]. Journal title, 7(3), 152-158. https://doi.org/10.52547/jhehp.7.3.152
Ghazi Zadeh, M., & Razaghi, A. (1999). A textbook of Sensory evaluation of foods (Vol. 11th). Shahid Beheshti University, Faculty of Nutrition Sciences and food technology.
Griffin, S., Falzon, O., Camilleri, K., & Valdramidis, V. P. (2020). Bacterial and fungal contaminants in caprine and ovine cheese: A meta-analysis assessment. Food Research International, 137, 109445. https://doi.org/10.1016/j.foodres.2020.109445
Hajimahmoodi, M., Faramarzi, M. A., Mohammadi, N., Soltani, N., Oveisi, M. R., & Nafissi-Varcheh, N. (2010). Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. Journal of Applied Phycology, 22(1), 43-50. https://doi.org/10.1007/s10811-009-9424-y
Halith, A. M., Elumalai, S., & Sampathkumar, Y. (2020). Studies on arsenic absorption, adsorption, accumulation and analysis of biofuel compounds in microalgae for the use of arsenic detoxification and biofuel productions. International Journal for Research in Engineering Application & Management (IJREAM), 6(1), 532-547. https://doi.org/10.35291/2454-9150.2020.0344
Hosseinzadeh, H., Karimi, G.-R., & Rakhshanizadeh, M. (2005). Anticonvulsant effect of Hypericum perforatum: role of nitric oxide. Journal of Ethnopharmacology, 98(1), 207-208. https://doi.org/10.1016/j.jep.2004.12.007
Ibrahim, O. A. E.-H., Mohamed, A. G., & Bahgaat, W. K. (2019). Natural peppermint-flavored cheese. Acta Sci. Pol. Technol. Aliment, 18(1), 75-85. https://doi.org/10.17306/J.AFS.2019.0607
Iran National Standards Organization (INSO). (1977). Determination of the ash content of processed cheese, (INSO Standard No. 1755, 1st Edition. http://standard.isiri.gov.ir/StandardFiles/1755.htm (in Persian)
Iran National Standards Organization (INSO). (1999). Method for sensory evaluation of cheese, (INSO Standard No. 4938). http://standard.isiri.gov.ir/StandardView.aspx?Id=10693 (in Persian)
Iran National Standards Organization (INSO). (2002a). Cheese- general specifications, (INSO Standard No. 2344, 2st Revision). http://standard.isiri.gov.ir/StandardView.aspx?Id=997 (in Persian)
Iran National Standards Organization (INSO). (2002b). Cheese and processed cheese-determination of total solids, (reference method)-test method, (INSO Standard No. 1753, 1st Revision). http://standard.isiri.gov.ir/StandardView.aspx?Id=8430 (in Persian)
Iran National Standards Organization (INSO). (2010). Food and feed products ñDetermination of nitrogen by the kejeldahl method-General guidelines, (INSO Standard No. 13483, 1st Edition). http://standard.isiri.gov.ir/StandardView.aspx?Id=6162 (in Persian)
Iran National Standards Organization (INSO). (2014). Cheese and processed cheese products-Determination of fat content-Gravimetric method (Reference method), (INSO Standard No. 17602, 1st Edition). http://standard.isiri.gov.ir/StandardView.aspx?Id=41272
Iran National Standards Organization (INSO). (2015). Microbiology of the food chain-Horizontal method for the enumeration of microorganisms-Part 1:Colony count at 30 °C by the pour plate technique, (INSO Standard No. 5272-1, 1st Edition). http://standard.isiri.gov.ir/StandardView.aspx?Id=43263
Iran National Standards Organization (INSO). (2022). Milk and milk products-Determination of titrable acidity and pH-Test method, (INSO Standard No. 2852, 2nd Revision). http://standard.isiri.gov.ir/StandardView.aspx?Id=57037
Izco, J. M., & Torre, P. (2000). Characterisation of volatile flavour compounds in Roncal cheese extracted by the ‘purge and trap' method and analysed by GC–MS. Food chemistry, 70(3), 409-417. https://doi.org/10.1016/S0308-8146(00)00100-X
Jafari Porzani, S., Konur, O., & Nowruzi, B. (2022). Cyanobacterial natural products as sources for antiviral drug discovery against COVID-19. Journal of Biomolecular Structure and Dynamics, 40(16), 7629-7644. https://doi.org/10.1080/07391102.2021.1899050
Jordan, K., Hunt, K., Lourenco, A., & Pennone, V. (2018). Listeria monocytogenes in the Food Processing Environment. Current Clinical Microbiology Reports, 5(2), 106-119. https://doi.org/10.1007/s40588-018-0090-1
Jurkovic, D., Krizková, L., Dusinský, R., Belicová, A., Sojka, M., Krajcovic, J., & Ebringer, L. (2006). Identification and characterization of enterococci from bryndza cheese. Lett Appl Microbiol, 42(6), 553-559. https://doi.org/10.1111/j.1472-765X.2006.01918.x
Kamble, S. P., Gaikar, R. B., Padalia, R. B., & Shinde, K. D. (2013). Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. Journal of Applied Pharmaceutical Science, 3(8), 149-153.
Khairy, H. M., & El-Kassas, H. Y. (2010). Active substance from some blue green algal species used as antimicrobial agents. African Journal of Biotechnology, 9(19), 2789-2800.
Khalili, M., & Ebrahimzadeh, M. A. (2015). A Review on Antioxidants and Some of their Common Evaluation Methods [Review]. Journal of Mazandaran University of Medical Sciences, 24(120), 188-208. http://jmums.mazums.ac.ir/article-1-4858-en.html (in Persian)
Koba, K., & Yanagita, T. (2014). Health benefits of conjugated linoleic acid (CLA). Obes Res Clin Pract, 8(6), e525-532. https://doi.org/10.1016/j.orcp.2013.10.001
Kousta, M., Mataragas, M., Skandamis, P., & Drosinos, E. H. (2010). Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control, 21(6), 805-815. https://doi.org/10.1016/j.foodcont.2009.11.015
Kümmel, J., Stessl, B., Gonano, M., Walcher, G., Bereuter, O., Fricker, M., . . . Ehling-Schulz, M. (2016). Staphylococcus aureus Entrance into the Dairy Chain: Tracking S. aureus from Dairy Cow to Cheese. Front Microbiol, 7, 1603. https://doi.org/10.3389/fmicb.2016.01603
Li, H., Deng, Z., Zhu, H., Hu, C., Liu, R., Young, J. C., & Tsao, R. (2012). Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Research International, 46(1), 250-259. https://doi.org/10.1016/j.foodres.2011.12.014
Licon, C. C., Moro, A., Librán, C. M., Molina, A. M., Zalacain, A., Berruga, M. I., & Carmona, M. (2020). Volatile Transference and Antimicrobial Activity of Cheeses Made with Ewes’ Milk Fortified with Essential Oils. Foods, 9(1), 35. https://www.mdpi.com/2304-8158/9/1/35
Manna, I., Liguori, M., Valentino, P., Condino, F., La Russa, A., Clodomiro, A., . . . Quattrone, A. (2008). Preliminary evidences of a NOS2A protective effect from Relapsing–Remitting Multiple Sclerosis. Journal of the neurological sciences, 264(1), 112-117. https://doi.org/10.1016/j.jns.2007.08.007
Marcinkowska-Lesiak, M., Onopiuk, A., Zalewska, M., Ciepłoch, A., & Barotti, L. (2018). The effect of different level of Spirulina powder on the chosen quality parameters of shortbread biscuits. Journal of Food Processing and Preservation, 42(3), e13561. https://doi.org/10.1111/jfpp.13561
Mardiani, A., Sumarmono, J., & Setyaward, T. (2013). Total Bakteri Asam Laktat, Kadar Air Dan Protein Keju Peram Susu Kambing Yang Mengandung Probiotik Lactobacillus casei DAN Bifidobacterium longum. Jurnal Ilmiah Peternakan, 1(1), 244-253. http://jos.unsoed.ac.id/index.php/jip/article/view/600
Miller, j. (2017, April). 15 Health Benefits of Cheese, According to Science (+8 Delicious Recipes). Retrieved April 29, 2017 from https://www.jenreviews.com/cheese/
Mishra, S. K., Shrivastav, A., Pancha, I., Jain, D., & Mishra, S. (2010). Effect of preservatives for food grade C-Phycoerythrin, isolated from marine cyanobacteria Pseudanabaena sp. Int J Biol Macromol, 47(5), 597-602. https://doi.org/10.1016/j.ijbiomac.2010.08.005
Mohamed, S. H., Zaky, W. M., Kassem, J. M., Abbas, H. M., Salem, M., & Said-Al Ahl, H. (2013). Impact of antimicrobial properties of some essential oils on cheese yoghurt quality. World Applied Sciences Journal, 27(4), 497-507.
Nagao, K., & Yanagita, T. (2005). Conjugated fatty acids in food and their health benefits. Journal of bioscience and bioengineering, 100(2), 152-157. https://doi.org/10.1263/jbb.100.152
Nowruzi, B., Sarvari, G., & Blanco, S. (2020). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959. https://doi.org/10.1016/j.algal.2020.101959
Ötleş, S., & Pire, R. (2019). Fatty Acid Composition of Chlorella and Spirulina Microalgae Species. Journal of AOAC INTERNATIONAL, 84(6), 1708-1714. https://doi.org/10.1093/jaoac/84.6.1708
Pandey, J. P., & Tiwari, A. (2010). Optimization of biomass production of Spirulina maxima. J. Algal Biomass Utln, 1(2), 20-32.
Parada, J. L., Zulpa de Caire, G., Zaccaro de Mulé, M. a. C., & Storni de Cano, M. M. (1998). Lactic acid bacteria growth promoters from Spirulina platensis. International Journal of Food Microbiology, 45(3), 225-228. https://doi.org/10.1016/S0168-1605(98)00151-2
Pariza, M. W., Park, Y., & Cook, M. E. (2001). The biologically active isomers of conjugated linoleic acid. Prog Lipid Res, 40(4), 283-298. https://doi.org/10.1016/s0163-7827(01)00008-x
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698
Priyanka, M., Kempanna, C., & Narasimha, M. (2013). Quality characteristics of yoghurt enriched with Spirulina powder. Mysore Journal of Agricultural Sciences, 47(2), 354-359.
Punampalam, R., Khoo, K. S., & Sit, N. W. (2018). Evaluation of antioxidant properties of phycobiliproteins and phenolic compounds extracted from Bangia atropurpurea. Malays. J. Fundam. Appl. Sci, 14, 289-297.
Puyfoulhoux, G., Rouanet, J. M., Besançon, P., Baroux, B., Baccou, J. C., & Caporiccio, B. (2001). Iron availability from iron-fortified spirulina by an in vitro digestion/Caco-2 cell culture model. J Agric Food Chem, 49(3), 1625-1629. https://doi.org/10.1021/jf001193c
Rezaei, M., Yahyaei, M., Parviz, M., & Khodaei motlagh, M. (2014). A Survey of microbial contamination in Traditional Cheese distributed in Markazi Province in 2010 [Research]. Iranian Journal of Health and Environment, 7(1), 115-122. http://ijhe.tums.ac.ir/article-1-5326-en.html (in Persian)
Ritota, M., & Manzi, P. (2020). Rapid Determination of Total Tryptophan in Yoghurt by Ultra High Performance Liquid Chromatography with Fluorescence Detection. Molecules, 25(21). https://doi.org/10.3390/molecules25215025
Romay, C., González, R., Ledón, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci, 4(3), 207-216. https://doi.org/10.2174/1389203033487216
Sajilata, M. G., Singhal, R. S., & Kamat, M. Y. (2008). Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. Journal of Food Engineering, 84(2), 321-326. https://doi.org/10.1016/j.jfoodeng.2007.05.028
Salek Moghadam, A. R., Foruhesh Tehrani, H., Anssari, H., Ravadgar, B., Noorani Vatani, A., & Ghassemi, M. (2001). A survey on bacterial contamination on one-hundred unpasteurized cheese samples and pasteurized cheese as control and stability of commonly contaminating bacteria to different salt concentration [Research]. Razi Journal of Medical Sciences, 8(25), 293-299. http://rjms.iums.ac.ir/article-1-346-en.html (in Persian)
Selvam, R., Subramanian, L., Gayathri, R., & Angayarkanni, N. (1995). The anti-oxidant activity of turmeric (Curcuma longa). Journal of Ethnopharmacology, 47(2), 59-67. https://doi.org/10.1016/0378-8741(95)01250-H
Serlahwati, D., Farida, Y., & Asriana, Y. (2009). Penetapan Kadar β-karoten dalam Buah Parika Merah, Kuning dan Hijau (Capsicum annum Var. annum L.) Secara Kromatografi Cair Kinerja Tinggi. Jurnal). Jakarta: Fakultas Farmasi Univesitas Pancasila.
Shadan, M., & Khoshabi, F. (2003). A Survey on Microbial Contamination on Traditional Cheeses in Zahedan Province. Zahedan. J Res Med Sci, 4(1), 33-41. (in Persian)
Shalaby, E. A., Shanab, S. M., & Singh, V. (2010). Salt stress enhancement of antioxidant and antiviral efficiency of Spirulina platensis. J Med Plants Res, 4(24), 2622-2632.
Sinanoglu, O., Yener, A. N., Ekici, S., Midi, A., & Aksungar, F. B. (2012). The Protective Effects of Spirulina in Cyclophosphamide Induced Nephrotoxicity and Urotoxicity in Rats. Urology, 80(6), 1392.e1391-1392.e1396. https://doi.org/10.1016/j.urology.2012.06.053
Singh, R. K., Tiwari, S. P., Rai, A. K., & Mohapatra, T. M. (2011). Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics, 64(6), 401-412. https://doi.org/10.1038/ja.2011.21
Smith-Palmer, A., Stewart, J., & Fyfe, L. (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiology, 18(4), 463-470. https://doi.org/10.1006/fmic.2001.0415
Staughton, J. (2020, January). 20 Best Foods for Healthy Weight Gain. Organic Information Services Pvt Ltd. Retrieved January 31, 2020 from https://www.organicfacts.net/home-remedies/20-foods-for-healthy-weight-gain.html
Terpou, A., Bosnea, L., Mataragkas, M., & Markou, G. (2021). Influence of Incorporated Arthrospira (Spirulina) platensis on the Growth of Microflora and Physicochemical Properties of Feta-Type Cheese as Functional Food. Proceedings, 70(1), 97. https://doi.org/10.3390/foods_2020-07659
Thillairajasekar, K., Duraipandiyan, V., Perumal, P., & Ignacimuthu, S. (2009). Antimicrobial activity of Trichodesmium erythraeum (Ehr) (microalga) from South East coast of Tamil Nadu, India. International Journal of Integrative Biology, 5, 167-170.
Trmčić, A., Chauhan, K., Kent, D. J., Ralyea, R. D., Martin, N. H., Boor, K. J., & Wiedmann, M. (2016). Coliform detection in cheese is associated with specific cheese characteristics, but no association was found with pathogen detection. Journal of dairy Science, 99(8), 6105-6120. https://doi.org/10.3168/jds.2016-11112
Varga, L., Szigeti, J., Kovács, R., Földes, T., & Buti, S. (2002). Influence of a Spirulina platensis Biomass on the Microflora of Fermented ABT Milks During Storage (R1). Journal of dairy Science, 85(5), 1031-1038. https://doi.org/10.3168/jds.S0022-0302(02)74163-5
Vonshak, A. (1990). Recent advances in microalgal biotechnology. Biotechnology Advances, 8(4), 709-727. https://doi.org/10.1016/0734-9750(90)91993-Q
Winarni Agustini, T., Farid Ma’ruf, W., Widayat, W., Suzery, M., Hadiyanto, H., & Benjakul, S. (2016). Application of spirulina platensis on ice cream and soft cheese with respect to their nutritional and sensory perspectives. Jurnal Teknologi, 78(4-2). https://doi.org/10.11113/jt.v78.8216
Yan, M., Liu, B., Jiao, X., & Qin, S. (2014). Preparation of phycocyanin microcapsules and its properties. Food and bioproducts processing, 92(1), 89-97. https://doi.org/10.1016/j.fbp.2013.07.008
Younis, M. O., Baka, Z., Abo-Doubara, M., El-Metwaly, M., & Mostafa, A. (2020). Utilization of cyanobacteria extracts in improving the microbial quality of soft white cheese. Journal of Agricultural Chemistry and Biotechnology, 11(7), 223-228. https://doi.org/10.21608/jacb.2020.108790
Yousefi Mashouf , R. (2002). Brucella and coliform organisms in fresh cheese produced in hamadan–2000. Journal of Research in Medical Sciences (JRMS), 6(4), 348-349. https://sid.ir/paper/26474/en
CAPTCHA Image
Volume 12, Issue 1
June 2023
Pages 55-76
  • Receive Date: 16 June 2022
  • Revise Date: 16 August 2022
  • Accept Date: 02 September 2022