Investigating the Effect of Heat Treatment on the Compounds and Antimicrobial Properties of Shirazi Thyme and Cinnamon Essential Oils

Document Type : Original Paper

Authors

1 Department of Food Processing, Research Institute of Food Science and Industry, Mashhad, Iran

2 Department of Food Biotechnology, Research Institute of Food Science and Technology Mashhad, Iran

3 Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran

4 Department of Food Machineries, Research Institute of Food Science and Technology, Mashhad, Iran

5 Department of Polymer, Chemistry, Ferdowsi University of Mashhad, Iran

Abstract

Nowadays if essential oils can remain stable in food processing conditions, they can be used as an alternative to synthetic preservatives in food products. In this research, in addition to investigating the compounds of Zataria multiflora and cinnamon essential oils by gas chromatography-mass spectrometry, the antimicrobial properties of two essential oils before and after heat treatment (200 °C; 10 min) against Bacillus subtilis and Aspergillus niger were evaluated. Based on the obtained results, the thermal process did not significantly affect the main compounds of the essential oils. Cinnamaldehyde and eugenol were the main constituents of cinnamon essential oil, while phenolic compounds (thymol and carvacrol) made up 61.5% of Z. multiflora essential oil. The minimum inhibitory concentrations (MICs) of Z. multiflora and cinnamon essential oils against Aspergillus niger were 250 and 4000 µL/mL, respectively, while the minimum fungicidal concentrations (MFCs) were 250 and 16,000 µL/mL, respectively. Against Bucillus subtilis, the MIC and minimum bactericidal concentrations (MBC) values were 7.8 and 15.6 µL/mL for Z. multiflora, and 16,000 and 32,000 µL/mL for cinnamon, respectively. The inhibition zones of heated Z. multiflora and cinnamon essential oils were 20.5 and 16.05 mm against A. niger and 29.00 and 17.00 mm against B. subtilis, respectively. In general, the results demonstrated that the thermal process did not significantly affect the antimicrobial activity of the essential oils, meaning that they are suitable for use as antimicrobial agents in products that undergo thermal processing.

Keywords

Main Subjects

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Alhendi, A., & Choudhary, R. (2013). Current Practices in Bread Packaging and Possibility of Improving Bread Shelf-life by Nano-technology. INT J Food SCI Nutr, 3, 55-60.
Aljeldah, M. M. (2022). Antioxidant and Antimicrobial Potencies of Chemically-Profiled Essential Oil from Asteriscus graveolens against Clinically-Important Pathogenic Microbial Strains. Molecules, 27(11), 3539. https://doi.org/10.3390/molecules27113539.
Axel, C., Zannini, E., & Arendt, E. K. (2017). Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Critical Reviews in Food Science and Nutrition, 57(16), 3528-3542. https://doi.org/10.1080/10408398.2016.1147417
Badr, M. M., Badawy, M. E. I., & Taktak, N. E. M. (2022). Preparation, characterization, and antimicrobial activity of cinnamon essential oil and cinnamaldehyde nanoemulsions. Journal of Essential Oil Research, 34(6), 544-558. https://doi.org/10.1080/10412905.2022.2107100
Bagamboula, C., Uyttendaele, M., & Debevere, J. (2004). Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food microbiology, 21(1), 33-42. https://doi.org/10.1016/S0740-0020(03)00046-7
Bahmani, M., Tajeddini, P., Ezatpour, B., Rafieian-Kopaei, M., Naghdi, N., & Asadi-Samani, M. (2016). Ethenobothanical study of medicinal plants against parasites detected in Shiraz, southern part of Iran. Der Pharmacia Lettre, 8(1), 153-160.
Banwart, G. J. (1989). Chapter10- Control of Microorganisms. In Basic Food Microbiology Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6453-5_10
Bassolé, I. H., & Juliani, H. R. (2012). Essential oils in combination and their antimicrobial properties. Molecules, 17(4), 3989-4006. https://doi.org/10.3390/molecules17043989
Basti, A. A., Gandomi, H., Noori, N., & Khanjari, A. (2016). Chapter 83 - Shirazi thyme (Zataria multiflora Boiss) Oils. In Preedy (Ed.), Essential Oils in Food Preservation, Flavor and Safety (pp. 731-736). Academic Press. https://doi.org/10.1016/B978-0-12-416641-7.00083-3
Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M. S., Vijayakumar, R., & Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & Oil Science and Technology, 2(2), 49-55. https://doi.org/10.1016/j.gaost.2019.03.001
Borghei, M., Karbassi, A., Oromiehie, A., & Javid, A. (2010). Microbial biodegradable potato starch based low density polyethylene. African Journal of Biotechnology, 9(2), 4075-4080.
Bounatirou, S., Smiti, S., Miguel, M. G., Faleiro, L., Rejeb, M. N., Neffati, M., . . . Pedro, L. G. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105(1), 146-155. https://doi.org/10.1016/j.foodchem.2007.03.059
Calo, J. R., Crandall, P. G., O'Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems–A review. Food control, 54, 111-119. https://doi.org/10.1016/j.foodcont.2014.12.040
Cook, F. K., & Johnson, B. L. (2009). Microbiological Spoilage of Cereal Products. In Sperber & Doyle (Eds.), Compendium of the Microbiological Spoilage of Foods and Beverages. Food Microbiology and Food Safety. (pp. 223-244). Springer New York. https://doi.org/10.1007/978-1-4419-0826-1_8
Couladis, M., Tzakou, O., Kujundzic, S., Sokovic, M., & Mimica‐Dukic, N. (2004). Chemical analysis and antifungal activity of Thymus striatus. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(1), 40-42. https://doi.org/10.1002/ptr.1353
Faleiro, M. L. (2011). The mode of antibacterial action of essential oils. Science against microbial pathogens: communicating current research and technological advances, 2, 1143-1156.
FAO. (2023). Food Loss and Waste database. Food and Agriculture Organization of the United Nations. https://www.fao.org/platform-food-loss-waste/flw-data/en/
Faparusi, F., & Adewole, A. (2019). Characterization of moulds associated with spoilage of bread soldin Ilaro, Yewa-South, Nigeria. International Journal of Biological and Chemical Sciences, 13(1), 426-433. https://doi.org/10.4314/ijbcs.v13i1.33
Fattahi, R., Ghanbarzadeh, B., Dehghannya, J., Hosseini, M., & Falcone, P. M. (2020). The effect of Macro and Nano-emulsions of cinnamon essential oil on the properties of edible active films. Food Science & Nutrition, 8(12), 6568-6579. https://doi.org/10.1002/fsn3.1946
Gandomi, H., Misaghi, A., Basti, A. A., Bokaei, S., Khosravi, A., Abbasifar, A., & Javan, A. J. (2009). Effect of Zataria multiflora Boiss. essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese. Food and Chemical Toxicology, 47(10), 2397-2400. https://doi.org/10.1016/j.fct.2009.05.024
Golkar, P., Mosavat, N., & Jalali, S. A. H. (2020). Essential oils, chemical constituents, antioxidant, antibacterial and in vitro cytotoxic activity of different Thymus species and Zataria multiflora collected from Iran. South African Journal of Botany, 130, 250-258. https://doi.org/10.1016/j.sajb.2019.12.005
Guynot, M., Ramos, A., Seto, L., Purroy, P., Sanchis, V., & Marin, S. (2003). Antifungal activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products. Journal of Applied Microbiology, 94(5), 893-899.
Jideani, V. A., & Vogt, K. (2016). Antimicrobial packaging for extending the shelf life of bread—A review. Critical Reviews in Food Science and Nutrition, 56(8), 1313-1324. https://doi.org/10.1080/10408398.2013.768198
Klančnik, A., Piskernik, S., Jeršek, B., & Možina, S. S. (2010). Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of microbiological methods, 81(2), 121-126. https://doi.org/10.1016/j.mimet.2010.02.004
Kordsardouei, H., Barzegar, M., & Sahari, M. A. (2013). Application of Zataria multiflora Boiss. and Cinnamon zeylanicum essential oils as two natural preservatives in cake. Avicenna Journal of Phytomedicine, 3(3), 238-247.
Krepker, M., Zhang, C., Nitzan, N., Prinz-Setter, O., Massad-Ivanir, N., Olah, A., . . . Segal, E. (2018). Antimicrobial LDPE/EVOH Layered Films Containing Carvacrol Fabricated by Multiplication Extrusion. Polymers, 10(8).
Mahmoudvand, H., Mahmoudvand, H., Oliaee, R. T., Kareshk, A. T., Mirbadie, S. R., & Aflatoonian, M. R. (2017). In vitro protoscolicidal effects of Cinnamomum zeylanicum essential oil and its toxicity in mice. Pharmacognosy magazine, 13(Suppl 3), S652. https://doi.org/10.4103%2Fpm.pm_280_16
Manso, S., Cacho-Nerin, F., Becerril, R., & Nerín, C. (2013). Combined analytical and microbiological tools to study the effect on Aspergillus flavus of cinnamon essential oil contained in food packaging. Food control, 30(2), 370-378. https://doi.org/10.1016/j.foodcont.2012.07.018
Mazkour, S., Shekarforoush, S. S., & Basiri, S. (2019). The effects of supplementation of Bacillus subtilis and Bacillus coagulans spores on the intestinal microflora and growth performance in rat. Iran J Microbiol, 11(3), 260-266.
Moghadam, Z. A., Hosseini, H., Hadian, Z., Asgari, B., Mirmoghtadaie, L., Mohammadi, A., . . . Javadi, N. H. S. (2019). Evaluation of the antifungal activity of cinnamon, clove, thymes, zataria multiflora, cumin and caraway essential oils against Ochratoxigenic Aspergillus ochraceus. J. Pharm. Res. Int., 26(1), 1-16.
Muhialdin, B. J., Hassan, Z., & Saari, N. (2013). Lactic acid bacteria in biopreservation and the enhancement of the functional quality of bread. Lactic acid bacteria R & D for food, health and livestock purposes. InTech, Rijeka, 155-172. https://doi.org/10.5772/51026
Naderi, G. A., Jafari, D. N., Jafarian Dehkordi, A., Asgary, S., & Shami, R. (2010). Analysis of essential oil components from four food spices and determination of their in vitro fibrinolytic activity. Physiology and Pharmacology, 13(4), 423-429. (in Persian)
Neffati, N., Aloui, Z., Karoui, H., Guizani, I., Boussaid, M., & Zaouali, Y. (2017). Phytochemical composition and antioxidant activity of medicinal plants collected from the Tunisian flora. Natural Product Research, 13(3), 1583-1588. https://doi.org/10.1080/14786419.2017.1280490
Pacher, N., Burtscher, J., Johler, S., Etter, D., Bender, D., Fieseler, L., & Domig, K. J. (2022). Ropiness in Bread—A Re-Emerging Spoilage Phenomenon. Foods, 11(19), 3021. https://doi.org/10.3390/foods11193021
Palermo, M., Pellegrini, N., & Fogliano, V. (2014). The effect of cooking on the phytochemical content of vegetables. Journal of the Science of Food and Agriculture, 94(6), 1057-1070. https://doi.org/doi/abs/10.1002/jsfa.6478
Paventi, G., de Acutis, L., De Cristofaro, A., Pistillo, M., Germinara, G. S., & Rotundo, G. (2020). Biological activity of Humulus lupulus (L.) essential oil and its main components against Sitophilus granarius (L.). Biomolecules, 10(8), 1108. https://doi.org/10.3390/biom10081108
Prasad, K. N., Yang, B., Dong, X., Jiang, G., Zhang, H., Xie, H., & Jiang, Y. (2009). Flavonoid contents and antioxidant activities from Cinnamomum species. Innovative Food Science & Emerging Technologies, 10(4), 627-632. https://doi.org/10.1016/j.ifset.2009.05.009
Raeisi, M., Mohammadi, M. A., Coban, O. E., Ramezani, S., Ghorbani, M., Tabibiazar, M., . . . Noori, S. M. A. (2021). Physicochemical and antibacterial effect of Soy Protein Isolate/Gelatin electrospun nanofibres incorporated with Zataria multiflora and Cinnamon zeylanicum essential oils. Journal of Food Measurement and Characterization, 15(2), 1116-1126. https://doi.org/10.1007/s11694-020-00700-0
Rahman, M. M., & Simsek, S. (2020). Go clean label: replacement of commercial dough strengtheners with hard red spring wheat flour in bread formulations. Journal of Food science and Technology, 57(10), 3581-359. https://doi.org/10.1007/s13197-020-04390-w
Ravimannan, N., Sevvel, P., & Saarutharshan, S. (2016). Study on fungi associated with spoilage of bread. Int J Adv Res Biol Sci, 3(4), 165-167. http://s-o-i.org/1.15/ijarbs-2016-3-4-23
Razavi, M. S., Golmohammadi, A., Nematollahzadeh, A., Ghanbari, A., & Davari, M. (2020). Optimizing the antifungal effects of Cinnamomum zeylanicum, Zataria multiflora, and Satureja khuzestanica essential oils against the blue mold fungus (Penicillium expansum) using Response Surface Methodology. Iranian Journal of Plant Protection Science, 51(1), 67-78. https://doi.org/10.22059/ijpps.2020.291689.1006917 (in Persian)
Riehle, P., Vollmer, M., & Rohn, S. (2013). Phenolic compounds in Cistus incanus herbal infusions -Antioxidant capacity and thermal stability during the brewing process. Food Research International, 53(2), 891-899. https://doi.org/10.1016/j.foodres.2012.09.020
Saadati Ardestani, N., Rojas, A., Esfandiari, N., Galotto, M. J., Babhadiashar, A., & Sajadian, S. A. (2022). Supercritical fluid extraction from Zataria multiflora boiss and impregnation of bioactive compounds in PLA for the development of materials with antibacterial properties. Processes, 10(9), 1787. https://doi.org/10.3390/pr10091787
Sharaf, E. F., & Al-Zaidi, H. S. (2021). In vitro Antifungal Activity of Some Indigenous Medicinal Plant Extracts against Five Isolates of Aspergillus fumigatus. Indian Journal of Pharmaceutical Sciences, 83(4), 695-700. https://doi.org/10.36468/pharmaceutical-sciences.820
Sharafati-chaleshtori, R., Sharafati-chaleshtori, F., Sharafati-chaleshtori, A., & Ashrafi, K. (2010). Antimicrobial effects and evaluation of total phenols flavonoids and flavonols contents of ethanolic extracts of Scrophularia striata. Journal of Shahrekord University of Medical Sciences, 11(4), 32-37. (in Persian)
Sun, H., Li, S., Chen, S., Wang, C., Liu, D., & Li, X. (2020). Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules, 159, 696-703. https://doi.org/10.1016/j.ijbiomac.2020.05.118
Sun, Q., Li, J., Sun, Y., Chen, Q., Zhang, L., & Le, T. (2020). The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chemistry, 317, 126405. https://doi.org/10.1016/j.foodchem.2020.126405
Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food control, 21(9), 1199-1218. https://doi.org/10.1016/j.foodcont.2010.02.003
Tomaino, A., Cimino, F., Zimbalatti, V., Venuti, V., Sulfaro, V., De Pasquale, A., & Saija, A. (2005). Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chemistry, 89(4), 549-554. https://doi.org/10.1016/j.foodchem.2004.03.011
Watkins, E. (1906). Ropiness in flour and bread and its detection and prevention. J. Soc. Chem. Ind, 25, 350-357.
Xiang, F., Zhao, Q., Zhao, K., Pei, H., & Tao, F. (2020). The Efficacy of Composite Essential Oils against Aflatoxigenic Fungus Aspergillus flavus in Maize. Toxins, 12(9), 562. https://doi.org/10.3390/toxins12090562
Xing, Y., Li, X., Xu, Q., Yun, J., & Lu, Y. (2010). Original article: Antifungal activities of cinnamon oil against Rhizopus nigricans, Aspergillus flavus and Penicillium expansum in vitro and in vivo fruit test. International Journal of Food Science & Technology, 45(9), 1837-1842. https://doi.org/10.1111/j.1365-2621.2010.02342.x
Yu, T., Yao, H., Qi, S., & Wang, J. (2020). GC-MS analysis of volatiles in cinnamon essential oil extracted by different methods. Grasas y Aceites, 71(3), e372-e372. https://doi.org/10.3989/gya.0462191
Zamanian Chaleshtori, Z., Bonyadian, M., Moshtaghi, H., & Ebrahimi, A. (2021). Antifungal effects of essential oils of Zataria multiflora, Mentha pulegium, and Mentha piperita. Journal of food quality and hazards control. https://doi.org/10.18502/jfqhc.8.1.5462
Zomorodian, K., Ghadiri, P., Saharkhiz, M. J., Moein, M. R., Mehriar, P., Bahrani, F., . . . Fani, M. M. (2015). Antimicrobial activity of seven essential oils from Iranian aromatic plants against common causes of oral infections. Jundishapur journal of microbiology, 8(2). https://doi.org/10.5812%2Fjjm.17766
CAPTCHA Image
Volume 12, Issue 3
December 2023
Pages 355-368
  • Receive Date: 05 February 2023
  • Revise Date: 30 May 2023
  • Accept Date: 02 July 2023