Improving Texture Properties and Increasing Viability of Yogurt Probiotics by Gelatin-Maltodextrin Microcapsules Loaded with α-Tocopherol

Document Type : Original Paper

Authors

1 Department of Research and Development, Damdaran (Teen) Dairy Company, Tehran, Iran

2 Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

3 Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

Enriching food is one of the most important ways to compensate for the lack of minerals and vitamins in the body of consumers. In this study, the encapsulation of α-tocopherol in gelatin and maltodextrin microparticles was carried out with the aim of enriching low-fat yogurt and the characteristics of the obtained microparticles (including encapsulation efficiency, zeta potential, particle size, thermal behavior (differential scanning calorimetry) and morphology (scanning electron microscope) were investigated. Based on the results, the encapsulation efficiency and the loading capacity of the microparticles containing α-tocopherol were acceptably high (97 and 25%, respectively). Microscopic images of gelatin-maltodextrin microparticles containing α-tocopherol showed a smooth and spherical surface as well as small cracks on the surface of the microparticles. In addition, the microparticles had a strong negative zeta potential (-27.29 mV), indicating a significant repulsive force between the microparticles and good stability. According to the results, maltodextrin as a potential prebiotic macromolecule increases the survival of Lactobacillus acidophilus during storage. The studied protein-polysaccharide microparticles are suitable for encapsulating α-tocopherol and potentially, they can have many applications in the food industry.

Keywords

Main Subjects

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

ARES, G., GONÇALVEZ, D., PÉREZ, C., REOLÓN, G., SEGURA, N., LEMA, P., & GÁMBARO, A. (2007). Influence of gelatin and starch on the instrumental and sensory texture of stirred yogurt. International Journal of Dairy Technology, 60(4), 263-269. https://doi.org/10.1111/j.1471-0307.2007.00346.x
Arilla, E., Igual, M., Martínez-Monzó, J., Codoñer-Franch, P., & García-Segovia, P. (2020). Impact of Resistant Maltodextrin Addition on the Physico-Chemical Properties in Pasteurised Orange Juice. Foods, 9(12). https://doi.org/10.3390/foods9121832
Basiri, L., Rajabzadeh, G., & Bostan, A. (2017). Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. LWT, 84, 471-478. https://doi.org/10.1016/j.lwt.2017.06.009
Basiri, L., Rajabzadeh, G., & Bostan, A. (2017). α-Tocopherol-loaded niosome prepared by heating method and its release behavior. Food Chem, 221, 620-628. https://doi.org/10.1016/j.foodchem.2016.11.129
Castro-Muñoz, R., Barragán-Huerta, B. E., & Yáñez-Fernández, J. (2015). Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). LWT - Food Science and Technology, 62(1, Part 1), 242-248. https://doi.org/10.1016/j.lwt.2014.09.042
Chung, S., Ghelfi, M., Atkinson, J., Parker, R., Qian, J., Carlin, C., & Manor, D. (2016). Vitamin E and Phosphoinositides Regulate the Intracellular Localization of the Hepatic α-Tocopherol Transfer Protein. J Biol Chem, 291(33), 17028-17039. https://doi.org/10.1074/jbc.M116.734210
Churio, O., & Valenzuela, C. (2018). Development and characterization of maltodextrin microparticles to encapsulate heme and non-heme iron. LWT, 96, 568-575. https://doi.org/10.1016/j.lwt.2018.05.072
da Silva, S. C., Fernandes, I. P., Barros, L., Fernandes, Â., José Alves, M., Calhelha, R. C., Pereira, C., Barreira, J. C. M., Manrique, Y., Colla, E., Ferreira, I. C. F. R., & Filomena Barreiro, M. (2019). Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods, 60, 103427. https://doi.org/10.1016/j.jff.2019.103427
Dadkhodazade, E., Mohammadi, A., Shojaee-Aliabadi, S., Mortazavian, A. M., Mirmoghtadaie, L., & Hosseini, S. M. (2018). Yeast Cell Microcapsules as a Novel Carrier for Cholecalciferol Encapsulation: Development, Characterization and Release Properties. Food Biophysics, 13(4), 404-411. https://doi.org/10.1007/s11483-018-9546-3
Fang, S., Zhao, X., Liu, Y., Liang, X., & Yang, Y. (2019). Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocolloids, 93, 102-110. https://doi.org/10.1016/j.foodhyd.2019.02.024
Francisco, C. R. L., Heleno, S. A., Fernandes, I. P. M., Barreira, J. C. M., Calhelha, R. C., Barros, L., Gonçalves, O. H., Ferreira, I. C. F. R., & Barreiro, M. F. (2018). Functionalization of yogurts with Agaricus bisporus extracts encapsulated in spray-dried maltodextrin crosslinked with citric acid. Food Chemistry, 245, 845-853. https://doi.org/10.1016/j.foodchem.2017.11.098
Gandía-Herrero, F., Jiménez-Atiénzar, M., Cabanes, J., García-Carmona, F., & Escribano, J. (2010). Stabilization of the Bioactive Pigment of Opuntia Fruits through Maltodextrin Encapsulation. Journal of Agricultural and Food Chemistry, 58(19), 10646-10652. https://doi.org/10.1021/jf101695f
Gunenc, A., Khoury, C., Legault, C., Mirrashed, H., Rijke, J., & Hosseinian, F. (2016). Seabuckthorn as a novel prebiotic source improves probiotic viability in yogurt. LWT - Food Science and Technology, 66, 490-495. https://doi.org/10.1016/j.lwt.2015.10.061
Jafari, S. M., Vakili, S., & Dehnad, D. (2019). Production of a Functional Yogurt Powder Fortified with Nanoliposomal Vitamin D Through Spray Drying. Food and Bioprocess Technology, 12(7), 1220-1231. https://doi.org/10.1007/s11947-019-02289-9
Jannasari, N., Fathi, M., Moshtaghian, S. J., & Abbaspourrad, A. (2019). Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. International Journal of Biological Macromolecules, 129, 972-979. https://doi.org/10.1016/j.ijbiomac.2019.02.096
KEOGH, M. K., & O'KENNEDY, B. T. (1998). Rheology of Stirred Yogurt as Affected by Added Milk Fat, Protein and Hydrocolloids. Journal of Food Science, 63(1), 108-112. https://doi.org/10.1111/j.1365-2621.1998.tb15687.x
Khan, W. A., Butt, M. S., Pasha, I., & Jamil, A. (2020). Microencapsulation of vitamin D in protein matrices: in vitro release and storage stability. Journal of Food Measurement and Characterization, 14(3), 1172-1182. https://doi.org/10.1007/s11694-019-00366-3
Krzeminski, A., Großhable, K., & Hinrichs, J. (2011). Structural properties of stirred yoghurt as influenced by whey proteins. LWT - Food Science and Technology, 44(10), 2134-2140. https://doi.org/10.1016/j.lwt.2011.05.018
Kyriakoudi, A., & Tsimidou, M. Z. (2018). Properties of encapsulated saffron extracts in maltodextrin using the Büchi B-90 nano spray-dryer. Food Chemistry, 266, 458-465. https://doi.org/10.1016/j.foodchem.2018.06.038
Lamsen, M. R. L., Wang, T., D'Souza, D., Dia, V., Chen, G., & Zhong, Q. (2020). Encapsulation of vitamin D(3) in gum arabic to enhance bioavailability and stability for beverage applications. J Food Sci, 85(8), 2368-2379. https://doi.org/10.1111/1750-3841.15340
Lekshmi, R. G. K., Tejpal, C. S., Anas, K. K., Chatterjee, N. S., Mathew, S., & Ravishankar, C. N. (2021). Binary blend of maltodextrin and whey protein outperforms gum Arabic as superior wall material for squalene encapsulation. Food Hydrocolloids, 121, 106976. https://doi.org/10.1016/j.foodhyd.2021.106976
Luo, Y., Teng, Z., & Wang, Q. (2012). Development of Zein Nanoparticles Coated with Carboxymethyl Chitosan for Encapsulation and Controlled Release of Vitamin D3. Journal of Agricultural and Food Chemistry, 60(3), 836-843. https://doi.org/10.1021/jf204194z
Macit, E., & Bakirci, I. (2017). Effect of different stablizers on quality characteristics of the set-type yogurt. African Journal of Biotechnology, 16(46), 2142-2151. https://doi.org/10.5897/AJB2017.16197
Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release – a review. International Journal of Food Science & Technology, 41(1), 1-21. https://doi.org/10.1111/j.1365-2621.2005.00980.x
Mitbumrung, W., Suphantharika, M., McClements, D. J., & Winuprasith, T. (2019). Encapsulation of Vitamin D(3) in Pickering Emulsion Stabilized by Nanofibrillated Mangosteen Cellulose: Effect of Environmental Stresses. J Food Sci, 84(11), 3213-3221. https://doi.org/10.1111/1750-3841.14835
Mudgil, P., Jumah, B., Ahmad, M., Hamed, F., & Maqsood, S. (2018). Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin. LWT, 98, 646-653. https://doi.org/10.1016/j.lwt.2018.09.008
Park, S. J., Garcia, C. V., Shin, G. H., & Kim, J. T. (2017). Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chemistry, 225, 213-219. https://doi.org/10.1016/j.foodchem.2017.01.015
Rabelo, R. S., Oliveira, I. F., da Silva, V. M., Prata, A. S., & Hubinger, M. D. (2018). Chitosan coated nanostructured lipid carriers (NLCs) for loading Vitamin D: A physical stability study. International Journal of Biological Macromolecules, 119, 902-912. https://doi.org/10.1016/j.ijbiomac.2018.07.174
Raju, P. N., & Pal, D. (2011). Effect of bulking agents on the quality of artificially sweetened misti dahi (caramel colored sweetened yoghurt) prepared from reduced fat buffalo milk. LWT - Food Science and Technology, 44(9), 1835-1843. https://doi.org/10.1016/j.lwt.2011.03.010
Ribeiro, J. S., & Veloso, C. M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocolloids, 112, 106374. https://doi.org/10.1016/j.foodhyd.2020.106374
Sahan, N., Yasar, K., & Hayaloglu, A. A. (2008). Physical, chemical and flavour quality of non-fat yogurt as affected by a β-glucan hydrocolloidal composite during storage. Food Hydrocolloids, 22(7), 1291-1297. https://doi.org/10.1016/j.foodhyd.2007.06.010
Sanchez, V., Baeza, R., Galmarini, M. V., Zamora, M. C., & Chirife, J. (2013). Freeze-Drying Encapsulation of Red Wine Polyphenols in an Amorphous Matrix of Maltodextrin. Food and Bioprocess Technology, 6(5), 1350-1354. https://doi.org/10.1007/s11947-011-0654-z
Santos, M. B., Geraldo de Carvalho, M., & Garcia-Rojas, E. E. (2021). Carboxymethyl tara gum-lactoferrin complex coacervates as carriers for vitamin D3: Encapsulation and controlled release. Food Hydrocolloids, 112, 106347. https://doi.org/10.1016/j.foodhyd.2020.106347
Schröder, A., Sprakel, J., Schroën, K., & Berton-Carabin, C. C. (2020). Chemical Stability of α-Tocopherol in Colloidal Lipid Particles with Various Morphologies. European Journal of Lipid Science and Technology, 122(6), 2000012. https://doi.org/10.1002/ejlt.202000012
Shakerian, M., Hadi Razavi, S., Khodaiyan, F., Ziai, S. A., Saeid Yarmand, M., & Moayedi, A. (2014). Effect of different levels of fat and inulin on the microbial growth and metabolites in probiotic yogurt containing nonviable bacteria. International Journal of Food Science & Technology, 49(1), 261-268. https://doi.org/10.1111/ijfs.12315
Talebi, V., Ghanbarzadeh, B., Hamishehkar, H., Pezeshki, A., & Ostadrahimi, A. (2021). Effects of different stabilizers on colloidal properties and encapsulation efficiency of vitamin D3 loaded nano-niosomes. Journal of Drug Delivery Science and Technology, 61, 101284. https://doi.org/10.1016/j.jddst.2019.101284
Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science & Emerging Technologies, 19, 29-43. https://doi.org/10.1016/j.ifset.2013.03.002
Walia, N., Dasgupta, N., Ranjan, S., Chen, L., & Ramalingam, C. (2017). Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-intestinal tract. Ultrasonics Sonochemistry, 39, 623-635. https://doi.org/10.1016/j.ultsonch.2017.05.021
Xiang, C., Gao, J., Ye, H., Ren, G., Ma, X., Xie, H., Fang, S., Lei, Q., & Fang, W. (2020). Development of ovalbumin-pectin nanocomplexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. Food Hydrocolloids, 106, 105926. https://doi.org/10.1016/j.foodhyd.2020.105926
CAPTCHA Image
Volume 12, Issue 3
December 2023
Pages 385-396
  • Receive Date: 06 January 2023
  • Revise Date: 16 July 2023
  • Accept Date: 01 August 2023