Comparison of Different Cell-wall Disruption and Fatty Acid Extraction from Dunaliella Salina Microalgae

Document Type : Original Paper

Authors

1 PhD. Student, Fisheries Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

2 Associate Professor, Fisheries Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

3 Professor, Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

As extracted oil from microalgae is highly affected by selected cell-wall breaking method and type of the solvent used, thus an appropriate choice matters in which it might affect the quantity. This study was conducted to determine the most effective method on Dunaliella salina microalga cell disruption and solvent by comparing several methods. According to the results, the most efficient technique for oil extraction from Dunaliella salina microalgae was recorded as combination of enzymatic and homogenization methods (2.26±0.02 g.L-1), followed by enzymatic method with 3% cellulose and 1.5% flavourzyme (2.04±0.02 g.L-1), and finally ultrasonication (1.61±0.00 g.L-1). Based on the fatty acid profile, C16:0, C18:1 and C18:2 fatty acids were recorded as the main constituents ethanol was the most effective solvent by extraction of 8.22%, 1.07% and 5.18% of above mentioned fatty acids. Furthermore, present results demonstrated that in order to efficiently extract lipid from Dunaliella salina, enzymatic and homogenization methods exhibited the most efficient technique for cell disruption.

Keywords

American Oil Chemists' Society, & Firestone, D. (1994). Official methods and recommended practices of the American Oil Chemists' Society. AOCS press.
Azachi, M., Sadka, A., Fisher, M., Goldshlag, P., Gokhman, I., & Zamir, A. (2002). Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant physiology, 129(3), 1320-1329. doi:https://doi.org/10.1104/pp.001909
Bai, X., Naghdi, F.G., Ye, L., Lant, P., & Pratt, S. (2014). Enhanced lipid extraction from algae using free nitrous acid pretreatment. Bioresource Technology, 159, 36-40. doi:https://doi.org/10.1016/j.biortech.2014.01.133
Chen, H., Jiang, J-G., & Wu, G-H. (2009). Effects of salinity changes on the growth of Dunaliella salina and its isozyme activities of glycerol-3-phosphate dehydrogenase. Journal of agricultural and food chemistry, 57(14), 6178-6182. doi:https://doi.org/10.1021/jf900447r
Chisti, Y., & Moo-Young, M. (1986). Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8(4), 194-204. doi:https://doi.org/10.1016/0141-0229(86)90087-6
Choi, S-A., Jung, J-Y., Kim, K., Lee, J-S., Kwon, J-H., Kim, S.W., Yang, J-W., & Park, J-Y. (2014). Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioresource technology, 161, 469-472. doi:https://doi.org/10.1016/j.biortech.2014.03.153
Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry, 15(5), 898-902. doi:https://doi.org/10.1016/j.ultsonch.2007.10.009
El-Baky, H.H.A., El-Baz, F.K., & El-Baroty, G.S. (2004). Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina. Biotechnology, 3(1), 102-108. doi:https:/doi.org/10.3923/biotech.2004.102.108
Gordillo, F.J., Goutx, M., Figueroa, F.L., & Niell, F.X. (1998). Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. Journal of Applied Phycology, 10(2), 135-144. doi:https://doi.org/10.1023/A:1008067022973
Grima, E.M., Belarbi, E.-H., Fernández, F.A., Medina, A.R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20(7-8), 491-515. doi:https://doi.org/10.1016/S0734-9750(02)00050-2
Günerken, E., D'Hondt, E., Eppink, M., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243-260. doi:https://doi.org/10.1016/j.biotechadv.2015.01.008
Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143-169. doi:https://doi.org/10.1016/j.rser.2011.07.143
Islam, M.A., Magnusson, M., Brown, R.J., Ayoko, G.A., Nabi, M.N., & Heimann, K. (2013). Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies, 6(11), 5676-5702. doi:https://doi.org/10.3390/en6115676
Jin, G., Yang, F., Hu, C., Shen, H., & Zhao, Z.K. (2012). Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 111, 378-382. doi:https://doi.org/10.1016/j.biortech.2012.01.152
Kula, M.R. & Schütte, H. (1987). Purification of proteins and the disruption of microbial cells. Biotechnology Progress, 3(1), 31-42. doi:https://doi.org/10.1002/btpr.5420030107
Lee, S.-Y., Kim, S.-H., Hyun, S.-H., Suh, H.W., Hong, S.-J., Cho, B.-K., Lee, C.-G., Lee, H., & Choi, H.-K. (2014). Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochemistry, 49(6), 996-1004. doi:https://doi.org/10.1016/j.procbio.2014.02.022
McMillan, J.R., Watson, I.A., Ali, M., & Jaafar, W. (2013). Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Applied Energy, 103, 128-134. doi:https://doi.org/10.1016/j.apenergy.2012.09.020
Meier, R.L. (1955). Biological cycles in the transformation of solar energy into useful fuels. Solar energy research, 23, 179-183.
Morales-Sánchez, D., Tinoco-Valencia, R., Kyndt, J. & Martinez, A. (2013). Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnology for Biofuels, 6(1), 100
Nascimento, I.A., Marques, S.S.I., Cabanelas, I.T.D., Pereira, S.A., Druzian, J.I., De Souza, C.O., Vich, D.V., De Carvalho, G.C., & Nascimento, M.A. (2013). Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Research, 6(1), 1-13. doi: https://doi.org/10.1007/s12155-012-9222-2
Niu, J-F., Wang, G-C., & Tseng, C-K. (2006). Method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expression and Purification, 49(1), 23-31. doi:https://doi.org/10.1016/j.pep.2006.02.001
Olofsson, M., Lamela, T., Nilsson, E., Bergé, J-P., Del Pino, V., Uronen, P., & Legrand, C. (2014). Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Marine drugs 12(4), 1891-1910. doi:https://doi.org/10.3390/md12041891
Peterson, C., Wagner, G., & Auld, D. (1983). Vegetable oil substitutes for diesel fuel. Transactions of the American Society of Agricultural Engineers, 26, 322-0327.
Qv, X.Y., Zhou, Q.F., & Jiang, J.G. (2014). Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis. Journal of Separation Science, 37(20), 2991-2999. doi:https://doi.org/10.1002/jssc.201400458
Salama, E-S., Kim, H-C., Abou-Shanab, R.A., Ji, M.-K., Oh, Y-K., Kim, S-H., & Jeon, B-H. (2013). Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess and Biosystems Engineering, 36(6), 827-833. doi: https://doi.org/10.1007/s00449-013-0919-1
Santos, A., Janssen, M., Lamers, P., Evers, W., & Wijffels, R. (2012). Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions. Bioresource Technology, 104, 593-599. doi:https://doi.org/10.1016/j.biortech.2011.10.084
Song, M., Pei, H., Hu, W., & Ma, G. (2013). Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresource Technology, 141, 245-251. doi:https://doi.org/10.1016/j.biortech.2013.02.024
Taher, H., Al-Zuhair, S., Al-Marzouqi, A.H., Haik, Y., & Farid, M. (2014). Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass and bioenergy, 66, 159-167. doi:https://doi.org/10.1016/j.biombioe.2014.02.034
Talebi, A.F., Mohtashami, S.K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H.H., Mirzajanzadeh, M., Shafaroudi, S.M., & Bakhtiari, S. (2013). Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2, 258-267. doi:https://doi.org/10.1016/j.algal.2013.04.003
Thompson Jr, G.A. (1994). Mechanisms of osmoregulation in the green alga Dunaliella salina. Journal of Experimental Zoology, 268(2), 127-132. doi:https://doi.org/10.1002/jez.1402680209
Vo, T., & Tran, D. (2014). Effects of salinity and light on growth of Dunaliella isolates. Journal of Applied & Environmental Microbiology, 2(5), 208-211.
Wang, D., Li, Y., Hu, X., Su, W. & Zhong, M. (2015). Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans. International Journal of Molecular Sciences, 16(4), 7707-7722. doi:https://doi.org/10.3390/ijms16047707
Yap, B.H., Crawford, S.A., Dumsday, G.J., Scales, P.J., & Martin, G.J. (2014). A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Research, 5, 112-120. doi:https://doi.org/10.1016/j.algal.2014.07.001
Zhang, Y., Deng, C., Cui, Y., & Cheng, J. (2016). Effect of different methods on cell disruption and oil extraction of microalgae. China Oils and Fats, 41(3), 61-65.
CAPTCHA Image
Volume 7, Issue 2
July 2018
Pages 167-176
  • Receive Date: 27 August 2017
  • Revise Date: 01 January 2018
  • Accept Date: 11 January 2018