Effect of hydrolysing condition on antioxidant activity of protein hydrolysate from Crucian carp (Carassius carassius)

Document Type : Original Paper

Authors

1 MSc. Graduated Student, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assistant Professor, Department of Fisheries, University of Chabahar Maritime and Marine Science

4 Assistant Professor, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

In this study protein hydrolysate was produced from the crucian carp using Alcalase 2.4L. The effect of temperature (40, 45, 50 and 55°C), time (60, 90, 120, 150, 180 & 210min) and enzyme/substrate (Protein) at ratio of (30, 60 and 90 Anson unit), on degree of hydrolysis and antioxidant activity of product were investigated in a in a completely randomized design. The highest degree of hydrolysis was observed at 45 °C, after 180min and enzyme/substrate ratio of 60 Anson unit/ Kg substrate. Under these conditions, degree of hydrolysis was 39.38 %. The antioxidant activity of protein hydrolysate was studied using DPPH radical scavenging activity, reducing power and Fe++ chelating activity. The most DPPH radical scavenging activity was 57.5%, that was obtained at 45ºC,  enzyme activity of 60 Au/kg and 150min of time of hydrolysis. Highest Fe++ chelating activity (44.56%) observed at 45ºC, enzyme activity of 60 Au/kg, and hydrolysis time of 180min. The highest reducing ability of protein hydrolysate observed at 120min. Hydrolysis time which showed 67.32% reducing power compared to 100 ppm ascorbic acid (100 %).

Keywords

اویسی‌پور، م.، عابدیان کناری، ع.، معتمدزادگان، ع.، و نظری، ر. 1389. بررسی خواص پروتئین‌های هیدرولیز شده امعاء و احشاء ماهی تون زرد باله با استفاده از آنزیم‌های تجاری. نشریه پژوهش‌های علوم و صنایع غذایی ایران. 6 (1): 68-76.
پروانه، و. 1385. کنترل کیفی و آزمایش های شیمیایی مواد غذایی. چاپ سوم. موسسه چاپ و انتشارات دانشگاه تهران. 332 ص.
AOAC. Official methods of analysis (18th ed.). 2000. Association of Official Analytical Chemists. Washington, DC.
Aspmo, S.I., Horn, S.J., & Eijsink, V.G.H. 2005. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40: 1957-1966.
Bhaskar, N., Benila, T., Radha ,C., & Lalitha, R.G. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, 99 (2): 335-343.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. 2009. Antioxidant & free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114:1198-1205.
Chabeaud, A., Dutournie, P., Guerard, F., Vandanjon, L., & Bourseau, P. 2009. Application of Response Surface Methodology to Optimise the Antioxidant Activity of a Saithe (Pollachius virens) Hydrolysate. Marine Biotechnology. 11: 445–455
Diniz, A.M., & Martin, A.M. 1997. Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein: Composition of the hydrolysates. International Journal of Food Science and Nutrition, 48: 191-200.
FAO (Food and Agriculture Organization), Fisheries and Aquaculture Department, Cultured Aquatic Species Information Programme. Available online at: http://www.fao.org/fishery/culturedspecies/Carassius _carassius/en, (September 2013).
Gimenez, B., Aleman, A., Montero, P., & Gomez-Guillén, M.C. 2009. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry. 114: 976-983.
Guerard, F., Guimas, L., & Binet, A. 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic. 20: 489-498.
Hoyle, N. T., & Merritt, J.H. 1994. Quality of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science, 59: 76-79.
IFIS (International Food Information Service). 2009. Dictionary of food science and technology. John Wiley & Sons, United Kingdom, pp: 114-115.
Jayaprakasha, G. K., Singh, R. P., & Sakariah, K. K. 2001. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 73:285-290.
Je, J.Y., Lee, K.H., Lee, M.H., & Ahn, C.B. 2009. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42: 1266-1272.
Kristinsson, H.G., & Rasco, B.A. 2000. Fish protein hydrolysates: production, biochemical and functional properties. Food Science and Nutrition, 40: 43-81.
Li, Y., Jiang, B., Zhang, T., Mu, W., & Liu, J. 2008. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106: 444-450.
Motamedzadegan, A., Davarniam, B., Asadi, G., Abedian, A.M., & Ovissipour, M.R.  2010. Optimization of enzymatic hydrolysis of yellowfin tuna (Thunnus albacares) viscera using Neutrase. International Aquatic Research. 2: 173-181.
Nalinanon, S.T., Benjakul, S., Kishimura, H., & Shahidi, F. 2011. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124: 1354-1362.
Ovissipour, M. R., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R., & Shahiri, H. 2009a. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115: 238-242.
Ovissipour, M., Taghiof, M., Motamedzadegan, A., Rasco, B., & Esmaeili Mulla, A. 2009b. Optimization of enzymatic hydrolysis of visceral waste proteins of beluga sturgeons (Huso huso) using Alcalase. International Aquatic Research, 1: 31-38.
Samaranayaka, A.G.P., & Li-Chan, E.C.Y. 2008. Autolysis-assisted production of protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chemistry, 107: 768-776.
Slizyte, R., Dauksas, E., Falch, E., Storro, I., & Rustad, T. 2005. Characteristics of protein fractions generated from cod (Gadus morhua) by-products. Process Biochemistry, 40: 2021-2033
Taheri, A., Abedian Kenari, A., Motamedzadegan, A., & Habibi-Rezaei, M. 2011. Poultry by-products and enzymatic hydrolysis: optimization by response surface methodology using Alcalase® 2.4L. International Journal of Food Engineering, 7: 1556-3758.
Thiansilakul, Y., Benjakul, S., & F. Shahidi. 2007. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. Journal of Food Biochemistry, 31: 266-287.
Vioque, J., Clemente, A., Pedroche, J., Yust, M. M., & Millgn, F. 2001. Obtencion yaplicaciones de hidrolizados proteicos. Journal of Grasas Aceites, 52: 132-136.
Wu, H.C., Chen, H.M., and Shiau, C.Y. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36: 949-957.
CAPTCHA Image
Volume 2, Issue 4
March 2014
Pages 351-364
  • Receive Date: 27 October 2013
  • Revise Date: 19 January 2014
  • Accept Date: 28 January 2014