Effects of temperature, time and enzyme to substrate ratio on preparation of whey protein hydrolysate

Document Type : Original Paper

Authors

1 MSc. Graduated Student, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

In present study, whey protein hydrolysate was prepared using Alcalase 2.4L from whey protein concentrate. The effect of temperature (40, 45, 50 and 55°C), time (30, 60, 90, 120, 150, 180 and 210 m) and enzyme/substrate ratio (30, 60 and 90 Anson unit/kg protein), on degree of hydrolysis and antioxidant activity of product were investigated in a completely randomized design. The highest degree of hydrolysis was observed at 55°C, hydrolysis time of 180 minutes and enzyme/substrate ratio of 60 Anson unit/kg substrate. Under these conditions, degree of hydrolysis was 51.62%. The antioxidant activity of protein hydrolysate was studied using reducing power and Fe2+ chelating activity. At maximum degree of hydrolysis, Fe2+ chelating activity were obtained 50.41%. As well as under this condition reducing‌-‌power of protein hydrolysate was 0.156 which showed 20.47% reducing‌-‌power compared to 100 ppm ascorbic acid.

Keywords

اویسی‌پور، م.، عابدیان کناری، ع.، معتمدزادگان، ع.، و نظری، ر. 1389. بررسی خواص پروتئین‌های هیدرولیز شده امعاء و احشاء ماهی تون زرد باله با استفاده از آنزیم‌های تجاری. نشریه پژوهش‌های علوم و صنایع غذایی ایران. 6(1): 68-76.
پروانه، و. 1385. کنترل کیفی و آزمایش های شیمیایی مواد غذایی. چاپ سوم. موسسه‌ چاپ و انتشارات دانشگاه تهران. صفحه 332.
ترکاشوند، ی. 1371. استفاده از آب‌پنیر جهت تهیه لاکتوز. پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس.
Aluko, R. E. & Monu, E. 2003. Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science, 68: 1254–1258.
AOAC. Official methods of analysis (18th ed.). 2000. Association of Official Analytical Chemists. Washington, DC.
Aspmo, S. I., Horn, S. J. & Eijsink, V. G. H. 2005. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Journal of Process Biochemistry, 40: 1957–196.
Blanca, H. L., Ana, Q., Lourdes, A. & Isidra, R. 2007. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Journal of International Dairy, 17: 42–49.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. & Nasri, M. 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Journal of Food Chemistry, 114: 1198–1205.
Clemente, A. 2000. Enzymatic protein hydrolysates in human nutrition. Journal of Trends in Food Science and Technology, 11: 254-262.
Cumby, N., Zhong, Y., Naczk, M. & Shahidi, F. 2008. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Journal of Food Chemistry, 109: 144–148.
Ha, E. & Zeniel, M. B. 2003. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). The Journal of Nutritional Biochemistry, 14: 251-258.
Hoyle, N. T. & Merritt, J. H. 1994. Quality of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science, 59: 76-79.
Ito, N., Hirose, M., Fukushima, S., Tsuda, H., Shirai, T. & Tatematsu, M. 1986. Studies on antioxidants: The carcinogenic and modifying effects on chemical carcinogenic. Journal of Food and Chemical Toxicology, 24: 1099–1102.
Jayaprakasha, G. K., Singh, R. P. & Sakariah, K. K. 2001. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Journal of Food Chemistry, 73: 285-290.
Je, J. Y., Lee, K. H., Lee, M. H. & Ahn, C. B. 2009. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Journal of Food Research International, 42: 1266-1272.
Kristinsson, H. G. & Rasco, B. A. 2000. Fish protein hydrolysates: production, biochemical and functional properties. Journal of Food Science and Nutrition, 40: 43-81.
Lahl, W. J., & Grindstaff, D. A. 1989. Spices and seasonings: hydrolyzes proteins. Proceedings of the  sixth SIFST. Symposium on Food Ingredients-Applications. Journal of Food Science and Technology, Singapore, 51- 65.
Manninem, A. H. 2009. Review: protein hydrolysates in sports nutrition. Journal of Nutrition and Metabolism, 6: 38–42.
Mullaly, M. M., O’Callaghan, D. M., Fitzgerald, R. J., Donnelly, W. J. & Dalton, J. P. 1995. Zymogen activation in pancreatic endoproteolytic preparations and influence on some whey protein characteristics. Journal of Food Science, 60 (2): 227–233.
Nalinanon, S. T., Benjakul, S., Kishimura, H. & Shahidi, F. 2011. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Journal of Food Chemistry, 124: 1354-1362.
Ovissipour, M., Abedian, A. M., Motamedzadegan, A., Rasco, B., Safari, R. & Shahiri, H. 2009a. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Journal of Food Chemistry, 115: 238–242.
Ovissipour, M., Taghiof, M., Motamedzadegan, A., Rasco, B. & Esmaeili Mulla, A. 2009b. Optimization of enzymatic hydrolysis of visceral waste proteins of beluga sturgeons (Huso huso) using Alcalase. Journal of International Aquatic Research, 1: 31-38.
Parrado, J., Miramontes, E., Jover, M., Gutierrez, J. F., de Teran, L. C. & Bautista, J. 2006. Preparation of a rice bran enzymatic extract with potential use as functional food. Journal of Food Chemistry, 4: 742–748.
Petersen, B. R. 1981. The impact of the enzymatic hydrolysis process on recovery and use of proteins, in enzymes and food Processing, Elsevier Applied Science Publishers, London, UK, 149–175.
Recio, I. & Visser, S. 1999 Identification of two distinct antibacterial domains within the sequence of bovine alpha (s2)-casein. Journal of Biochimica et Biophysica Acta, 1428: 314-326.
Saiga, A., Tanabe, S. & Nishimura, T. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51: 3661–3667.
Sarmadi, B.H. & Ismail, A. 2010. Antioxidative peptides from food proteins: a review. Peptides, 31: 1949- 1956.
Samaranayaka, A. G. P. & Li-Chan, E. C. Y. 2008. Autolysis-assisted production of protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Journal of Food Chemistry, 107: 768-776.
Slizyte, R., Dauksas, E., Falch, E., Storro, I. & Rustad, T. 2005. Characteristics of protein fractions generated from cod (Gadus morhua) by-products. Journal of Process Biochemistry, 40: 2021-2033.
Taheri, A., Abedian Kenari, A., Motamedzadegan, A. & Habibi-Rezaei, M. 2011. Poultry by-products and enzymatic hydrolysis: optimization by response surface methodology using Alcalase® 2.4L. International Journal of Food Engineering, 7: 1556-3758.
Thiansilakul, Y., Benjakul, S. & F, Shahidi. 2007. Antioxidative activity of protein hydrolysate from round scad muscle using Alcalase and flavourzyme. Journal of Food Biochemistry, 31: 266–287.
Walzem, R. L., DiUard, C. J. & German, J. B. 2002. Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be over looking. Journal of Critical Reviews in Food Science and Nutrition, 42: 353-375.
CAPTCHA Image
Volume 3, Issue 3
October 2014
Pages 245-254
  • Receive Date: 17 April 2014
  • Revise Date: 04 October 2014
  • Accept Date: 12 October 2014