Immobilization of Saccharomyces Cerevisiae on Alumina Ceramic Beads In Order to Reduce Aflatoxin M1 In Vitro

Document Type : Original Paper

Authors

1 PhD. Student, Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

2 Assistant Professor, Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

3 Associated Professor, Department of Food Science and Technology, College of Agricultural, Isfahan, Iran

4 Assistant Professor, Institute of Scientific-Applied Higher Education Jihad-e-Agriculture, Mashhad, Iran

Abstract

In this study the ability of Saccharomyces cerevisiae PTCC 5052 to adsorption of aflatoxin M1 was assessed. In order to improve operational efficiency, Alumina ceramic was analyzed as a potential support for immobilization of yeast cells. In immobilization process, results indicated that the binding abilities of AFM1 by live cells of Saccharomyces cerevisiae were higher than non-live immobilized cells on alumina ceramic within 48 hours (P<0.05). Then, the aflatoxin M1 solution (0.2 ppb) was passed through a ceramic substrate containing immobilized saccharomyces cerevisiae (both of live and non-live immobilized cells) in 5, 10 and 20 minutes. The results showed that the residual aflatoxin M1 in the solution after 20 minutes of circulation was minimal and the highest percentage of AFM1 reduction was 75. Alumina beads containing live immobilized yeast cells compared non- live yeasts, significantly reduced aflatoxin M1. The results of this study showed that the alumina ceramic can be used as a suitable bed for immobilization of saccharomyces cerevisiae to remove aflatoxin M1.

Keywords

سازمان ملی استاندارد ایران. 1388. خوراک انسان دام، بیشینه رواداری مایکوتوکسین‌ها ، استاندارد ملی ایران، شماره 5925، اصلاحیه.
سازمان ملی استاندارد ایران. 1390. شیر و فراورده‌های آن، اندازه‌گیری آفلاتوکسین  M1 به روش کروماتوگرافی مایع با کارایی بالا، استاندارد ملی ایران، شماره 7133، تجدیدنظر اول.
Azab, R.M., Tawakkol, W.M., Hamad, A.R.M., Abou-Elmagd, M.K., El -Agrab, H.M., & Refai, M.K. 2005. Detection and estimation of aflatoxin B1 in feeds and its biodegradation by bacteria and fungi. Egypt Journal of Natural Toxins, 2:20-39.
Beshay, U., Hesham, E., Ismail, I., & Moavad, H. 2011. β-glucanase by a recombinant strain of Escherichia coli immobilized in different matrices. Polish Journal of Microbiology, 2:133–138.
Corassin, C., Bovo, F., Rosim, H., & Oliveira, R. E. 2012. Efficiency of Saccharomyces cerevisiae and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control, 31:80-83.
Elgerbi, A.M., Aidoo, K.E., Candlish, A.A.G., & Williams. A. G. 2006. Effects of lactic acid bacteria and bifidobacteria on levels of aflatoxin M1 in milk and phosphate‌ buffer. Milch wissenschaft, 61(2):197-199.
Fallah, a., jafari, T., Fallah, A., & Rahnama, M., 2009. Determination of aflatoxin M1 levels in Iranian white and cream cheese. Food and Chemical Toxicology, 47 (8):1872-1873.
Hamdy, M., Kim, K.K., & Rudtke, C.A. 1990. Continuous ethanol production by yeast immobilized on to channeled Alumina beads .journal of Biomass, 21:189-206.
Janiszyn,z ., Dziuba, E., Boruczkowski, T., Chmielewsk, J., Kawa-Rygielska, J., & Rosiek, G. 2007. Ethanol fermentation with yeast cell immobilized on grains of porous ceramic sinter. Polish Journal of Food and Nutrition Sciences, 57:245-250.
Kabak, B., & Var, I. 2008. Factors affecting the removal of aflatoxin M1 from food model by Lactobacillus and Bifidobacterium strains. Journal of Environmental Science and Health B. 43 (7):-617-624.
karimi, A. 2009. Decolorization of Maxilon-Red by Kissiris Immobilized Phanerochaete Chrysosporium in a Trickle-Bed Bioreactor-Involvement of Ligninolytic Enzymes
Kourkoutas,Y., Bekatoroua, A., Banat, I.M., Marchantb, R., & Koutinas, A.A. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21:377–39.
Moss, M. O. 1998. Economic importance of mycotoxins. J. Appl. Microbiol, 84:62–76.
Navarro, j.m., & Durand, G. 1997. Modification of Yeast Metabolism by Immobilization on to Porous Glass. European Journal of Applied Microbiology, 4:243-254.
Oveisi, M.R., Janat, B., sadeghi,N., Hajimahmoodi, & M., Nikzad,a., 2007. Presence of aflatoxin M1 in milk and infant milk products in Tehran, Iran. Food Control, 18 (10):1216–1218.
Pereira, A.P., Mendes-Ferreira, A., Oliveira, J.M., Estevinho, L.M., & Mendes, A. 2013. Effect of Saccharomyces cerevisiae cells immobilization on mead Production. Journal of Food Science and Technology, 56:21-30.
Rapoport, A,. Borovikova, D., Kokina, A., Patmalnieks, A., Polyak, N., Pavlovska, L., Mezinskis, G., & Dekhtyar, Y., 2011. Immobilization of yeast cells on the surface of hydroxyapatite ceramics Process Biochemistry, 46:665–670.
Razzaghi-Abyaneh, M. 2013. Aflatoxins , Recent Advances and Future Prospects, Iva Simcic, http://dx.doi.org/10.57772/2500.
Rahaie, S., Emam-jomeh, Z.S., Razavi1, H., & Mazaheri, M. 2010. Immobilized Saccharomyces Cerevisiae as a potential Aflatoxin decontamination agent in Pistachio nuts. Brazilian Journal of Microbiology, 41:82-90.
Shahin, A.A.M. 2007. Removal of aflatoxin B1 from contaminated liquid media by dairy lactic acid bacteria. International Journal of Agriculture and Biology, 9(1):71-75.
Shetty, P.H. & Jespersen, L. 2006. Saccharomyces cervisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science and Technology, 17:48-55.
Webber, A., Hettiarachchy, N.S., webber, D., Sivarooban, T., & Horax, R. 2014. Heat-Stabilized Defatted Rice Bran (HDRB) as an Alternative Growth Medium for Saccharomyces cerevisiae. Journal of Food and Nutrition, 1:1-6.
CAPTCHA Image
Volume 5, Issue 3
December 2016
Pages 315-324
  • Receive Date: 24 April 2016
  • Revise Date: 21 June 2016
  • Accept Date: 29 June 2016