Effect of the Different Pre-Treatments Thermal, Pulse, Chemical and Mechanical on the External Mass Transfer Coefficient Changes, Moisture Diffusion Coefficient and Activation Energy

Document Type : Original Paper

Authors

1 Assistant Professor, Department of Mechanics of Biosystem Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

2 B.S Student, Department of Mechanics of Biosystem Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

Analysis of internal and external mass transfer coefficient can be a useful means to control    the drying process of food and agricultural products better. Accordingly, in this study, the effects of different treatments (thermal pretreatment by blanching, pulsed pretreatment with microwave radiation, mechanical pretreatment by ultrasound waves, and chemical pretreatment by osmotic dehydration) on the internal mass transfer coefficients (effective moisture coefficient), external mass transfer coefficients and activation energy were investigated. Experiments included three temperatures (45, 55 and 65 °C) and various pretreatments including thermal blanching with hot water (at 70, 80 and 90 °C), microwave pulses (90, 180 and 360 W), chemical osmosis (at 30, 50 and 70% concentrations), and mechanical ultrasound (at 15, 30 and 45 min intervals). The results showed that microwave and osmotic pretreatments had the largest and smallest effects on internal and external mass transfers compared with the control treatment. The highest internal (36.21×10-10 m2/s) and external (3.49×10-6 kgwater/m2s) mass transfer values observed under 360 W microwave pretreatment with the drying temperature of 65 °C, whereas the lowest internal (7.61×10-10 m2/s) and external (3.49×10-6 kgwater/m2s) values were observed in the control treatment at the drying temperature of 45 °C. The activation energy also ranged from 18.52 to 32.04 kJ/mol under various pretreatments and temperatures.

Keywords

احمدی چناربن، ح. 1389. پارامترهای کمی وکیفی موثر در فرآیند خشک کردن و نگهداری گیاه دارویی علف چای Hypericum perforatum L. به منظور کاهش ضایعات و مصرف انرژی. رساله دکتری دانشگاه آزاد واحد علوم و تحقیقات، تهران، ایران.
احمدی، ک.، قلی‌زاده، ح.، عبادزاده،  ح.ر.، حسین‌پور، ر.، حاتمی، ف.، عبدشاه، ه.، رضایی، م.م.، کاظمی‌فرد، ر. و فضلی استبرق، م. 1393. آمارنامه کشاورزی، محصولات باغی. وزارت جهادکشاورزی، معاونت برنامه ریزی و اقتصادی، مرکز فناوری اطلاعات و ارتباطات.
اصل‌نژادی، س. و  پیغمبردوست، س. ه. 1395. مطالعه سینتیک خشک کردن قارچ خوراکی پیش تیمار شده با آبگیری اسمزی. مهندسی بیوسیستم ایران، 47 (3): 575-569. 
باقرى، ه.، سیدآبادى، م.م. و کاشانى نژاد، م. 1393. مدل سازى سینتیک خش کشدن لایه نازک کمه (کشک محلى). فصلنامه علوم و فناوری‌های نوین غذایی، 2 (5): 3-16.
پورفلاح، ز.، نهاردانی، م.، سلامی‌نیا، م.، نوریان، س. و محمدی، م. 1390. سینتیک خشک کردن برش های سیب زمینی ترشی (Helianthus tuberosus L)  با روش جابه جایی هوای داغ. فصلنامه نوآوری در علوم و فناوری غذایی، 3 (4): 1-13.
شهیدی، ف.، محبی، م.، نوشاد، م.، احتیاطی، ا. و فتحی، م. 1390. بررسی تأثیر پیش تیمار اسمز و فراصوت بر برخی ویژگی های کیفی موز خشک شده به روش هوای داغ. نشریه پژوهشهای علوم و صنایع غذایی ایران، 7 (4): 263-272.
طباطبایی یزدی، ف.، محبی، م.، مرتضوی، س.ع.، قیطران‌پور، آ. و علیزاده بهبهانی، ب. 1393. مطالعه ضریب نفوذ موثر، انرژی فعال‌سازی و رفتار خشک‌شدن فرمولاسیون‌های مختلف ترخینه در خشک‌کن هوای داغ. نشریه پژوهش‌های علوم و صنایع غذایی ایران. 10 (3): 219-223.
مصباحی، غ. و جمالیان، ج. 1385. فرمولاسیون سس سیب متناسب با ذائقه ایرانی. علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی). 10 (2): 203-214.
Adedeji, A.A., Gachovska, T.K., Ngadi, M.O. & Raghavan, G.S.V. 2008. Effect of Pretreatments on Drying Characteristics of Okra, Drying Technology, 26(10): 1251-1256.
Aghbashlo, M., Kianmehr, M.H. & Samimi-Akhijahani, H. 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49(10): 2865-2871.
Amami, E., Khezami, L., Vorobiev, E. & Kechaou, N.  2008. Effect of Pulsed Electric Field and Osmotic Dehydration Pretreatment on the Convective Drying of Carrot Tissue. Drying Technology, 26 (2): 231-238.
Beigi, M. 2016. Influence of drying air parameters on mass transfer characteristics of apple slices. Heat Mass Transfer, 52(10): 2213–2221.
Bon, J., Rosselló, C., Femenia, A., Eim, V. & Simal, S. 2007. Mathematical Modeling of Drying Kinetics for Apricots: Influence of the External Resistance to Mass Transfer. Drying Technology, 25 (11): 1829-1835.
Doymaz, I. 2010. Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food and Bioproducts Processing, 88(2): 124-132.
Doymaz, I. 2004.  Drying kinetics of white mulberry. Journal of Food Engineering, 61(3): 341-346.
Eren, I., Yıldız-Turp, G., Kaymak-Ertekin, F. & Serdaroglu, M. 2008. The Effect of External Mass Transfer Resistance during Drying of Fermented Sausage. Drying Technology, 26(12): 1543-1551.
Jurendić, T. & Tripalo, B. 2011. Biot number-lag factor (Bi-G) correlation for tunnel drying of baby food. African Journal of Biotechnology, 10(59): 12676-12683.
Kaya, A., Aydin, O. & Demirtas, C. 2007.  Drying kinetics of red delicious apple. Biosystem Engineering, 96(4): 517-524.
Krokida, M.K. & Maroulis, Z.B. 1997. Effect of Drying Method on Shrinkage and Porosity. Drying Technology, 15(10): 2441-2458.
Lin, Y.L., Li, S.J., Zhu, Y., Bingol, G., Pan, Z. & Tara H.M. 2009. Heat and Mass Transfer Modeling of Apple Slices under Simultaneous Infrared Dry Blanching and Dehydration Process. Drying Technology, 27 (10): 1051-1059.
Maskan, M. 2001. Drying Shrinkage and Rehydration Characteristics of Kiwifruits during Hot Air and Microwave Drying. Journal of Food Engineering, 48 (2): 177-182.
Minaei, S., Motevali, A., Najafi, G. & Mousavi Seyedi, S.R. 2011. Influence of drying methods on activation energy, effective moisture diffusion and drying rate of pomegranate arils (Punica Granatum). Australian Journal of Crop Science, 6(4): 584-591.
Mujumdar, A.S. 2000, Drying Technology in Agriculture and Food Science. Science Publisher, Inc. 313P.
Sacilic, K. & Elicin, A. 2006.  Mathematical modeling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 173(3): 231-238.
Singh, B. & Gupta, A.K. 2007. Mass transfer kinetics and determination of effective diffusivity during convective dehydration of pre-osmosed carrot cubes. Journal of Food Engineering, 79(2): 459-470.
Sledz, M.,  Wiktor, A.,  Rybak, K.,  Nowacka, M.  & Witrowa-Rajchert, D. 2016. The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Applied Acoustics, 103: 148-156.
Tao, Y., Wang, P., Wang, Y., Kadam, S.U., Han, Y., Wang, J. & Zhou, J. 2016. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrasonics Sonochemistry, 31: 310-318.
Tunde-Akintunde, T.Y. & Ogunlakin, G.O. 2011. Influence of drying conditions on the effective moisture diffusivity and energy requirements during the drying of pretreated and untreated pumpkin. Energy Conversion and Management, 52(2): 1107-1113.
Wang, Z., Sun, J., Liao, X., Chen, F., Zhao, G., Wu, J. & Hu, X. 2007.  Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40(1): 39-46.
Zielinska, M. & Michalska, A. 2016. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212: 671-680.
CAPTCHA Image
Volume 6, Issue 3
November 2017
Pages 277-290
  • Receive Date: 11 January 2017
  • Revise Date: 04 June 2017
  • Accept Date: 12 June 2017