Optimization of the Effects of Thermoplastic Starch and Glycerol Concentration on Physicomechanical Properties of Polylactic acid/Thermoplastic Starch Blend by Response Surface Methodology

Document Type : Original Paper

Authors

1 Former PhD student, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Assistant Professor, Department of food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran

3 Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

4 Professor, Department of Plastics, Faculty of Polymer Processing, Iran Polymer & Petrochemical Institute, Tehran, Iran

Abstract

Polylactic acid (PLA)/Thermoplastic starch (TPS) blends as fully biodegradable materials have the potential of substituting petroleum-derived synthetic polymers for packaging applications and, especially producing disposable containers. In the present research the mentioned blends with compatibilizer were prepared by melt mixing method and the simultaneous effect of the factors of TPS weight percentage (CTPS) on the blend in the range of 10-50% and the glycerol weight percentage in its mixture with sorbitol (CGLY) in the range of 0-100% on tensile strength, impact strength and equilibrium moisture content of the blends was investigated by the response surface methodology. According to the obtained results, the blend with the optimum amounts of CTPS and CGLY of 34.9% and 28.7% respectively had the tensile strength, impact strength and equilibrium moisture content of 28 MPa, 25.5 J/m, and 14.3% respectively. The compatibilized PLA/TPS blend with the optimum amounts of CTPS and CGLY of 34.9% and 28.7% respectively, and the TPS phase containing 35 wt% of mixed plasticizer was prepared by a co-rotating twin screw extruder and its tensile strength, impact strength and equilibrium moisture content were measured. The relative deviation of the experimental data and the data predicted by the regression model for tensile strength, impact strength and equilibrium moisture content were 4.4%, 2.4% and 10.6% respectively.

Keywords

Arboleda, G. A., Montilla, C. E., Villada, H. S., & Varona, G. A. (2015). Obtaining a flexible film elaborated from cassava thermoplastic starch and polylactic acid. International Journal of Polymer Science2015. doi:http://dx.doi.org/10.1155/2015/627268
ASTM International. (2010). Standard test methods for determining the izod pendulum impact resistance of plastics, (No, D256-10e1).
ASTM International. (2002). Standard test method for tensile properties of plastics, (No. D638-02a).
Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835-864. doi:https://doi.org/10.1002/mabi.200400043
Dole, P., Joly, C., Espuche, E., Alric, I., & Gontard, N. (2004). Gas transport properties of starch based films. Carbohydrate Polymers, 58(3), 335-343. doi:https://doi.org/10.1016/j.carbpol.2004.08.002
Ebrahimi, H., Afshar Najafi, F.S., Seyed Shahabadi, S.I., & Garmabi, H. (2016). A response surface study on microstructure and mechanical properties of poly (lactic acid)/ thermoplastic starch/nanoclay nanocomposites. Journal of Composite Materials, 50(2), 269-278. doi:https://doi.org/10.1177/0021998315573560
Huneault, M.A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/ thermoplastic starch blends. Polymer, 48(1), 270-280. doi:https://doi.org/10.1016/j.polymer.2006.11.023
Iovino, R., Zullo, R., Rao, M.A., Cassar, L., & Gianfreda L. (2008). Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93(1), 147-157. doi:https://doi.org/10.1016/j.polymdegradstab.2007.10.011
Li, H., & Huneault, M.A. (2011). Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. Journal of Applied Polymer Science, 119(4), 2439-2448. doi:https://doi.org/10.1002/app.32956
Lorcks, J. (1998). Properties and applications of compostable starch-based plastic material. Polymer Degradation and Stability, 59(1-3), 245-249. doi:https://doi.org/10.1016/S0141-3910(97)00168-7
Lu, D.R., Xiao, C.M., & Xu, S.J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366-375.
Mugnozza, G.S., Schettini, E., Vox, G., Malinconico, M., Immirzi, B., & Pagliara, S. (2006). Mechanical properties decay and morphological behavior of biodegradable films for agricultural mulching in real scale experiment. Polymer Degradation and Stability, 91(11), 2801-2808. doi:https://doi.org/10.1016/j.polymdegradstab.2006.02.017
Muller, C.M.O., Pires, A.T.N., & Yamashita, F. (2012). Characterization of thermoplastic starch/poly (lactic acid) blends obtained by extrusion and thermopressing. Journal of the Brazilian Chemical Society, 23(3), 426-434. doi:http://dx.doi.org/10.1590/S0103-50532012000300008
Nampoothiri, K.M., Nair, N.R., & John, R.P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:https://doi.org/10.1016/j.biortech.2010.05.092
Phetwarotai, W., Potiyaraj, P., & Aht-Ong, D. (2012). Characteristics of biodegradable polylactide/ gelatinized starch films: effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126(S1): E162-E172. doi:https://doi.org/10.1002/app.36736
 Polystyrene (PS). (2017). Typical properties generic PS. Visited in June 2017. Available online at: https://plastics.ulprospector.com/generics/43/polystyrene-ps
Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly (lactic acid) and poly (butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. doi:https://doi.org/10.1016/j.carbpol.2009.01.024
Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (arenga pinnata) starch. Polymers, 7(6), 1106-1124. doi:https://doi.org/10.3390/polym7061106
Souza, R.C., & Andrade, C.T. (2002). Investigation of the gelatinization and extrusion processes of corn starch. Advances in Polymer Technology, 21(1), 17-24. doi:https://doi.org/10.1002/adv.10007
Spiess, W.E.L., & Wolf, W.R. (1983). The Results of the COST 90 project on water activity. IJowitt, R. Escher, F. Hallstron F.B. Meffer, M.F. Spiess, W.E.I. Aos, G. (eds.) Physical properties of foods. (pp. 65-91): Applied Science Publishers, London.
Stepto, R.F.T. (2003). The processing of starch as a thermoplastic. Macromolecular Symposia, 201(1), 203-212. doi:https://doi.org/10.1002/masy.200351123
Teixeira, E.M., Pasquini, D., Curvelo, A.A.S., Corradini, E., Belgacem, M.N., & Dufresne, A. (2009). Cassava bagasses cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422-431. doi:https://doi.org/10.1016/j.carbpol.2009.04.034
Wang, N., Yu, J., & Ma, X. (2007). Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International, 56(11), 1440-1447. doi:https://doi.org/10.1002/pi.2302
Yang, J.H., Yu, J.G., & Ma, X.F. (2006). Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS). Carbohydrate Polymers, 66(1), 110-116. doi:https://doi.org/10.1016/j.carbpol.2006.02.029
Yokesahachart, C., & Yoksan, R. (2011). Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly (lactic acid). Carbohydrate Polymers, 83(1),  22-31. doi:https://doi.org/10.1016/j.carbpol.2010.07.020
Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:https://doi.org/10.1016/j.progpolymsci.2006.03.002
Zhang, K.Y., Ran, X.H., Zhuang, Y.G., Yao, B., & Dong, L.S. (2009). Blends of poly (lactic acid) with thermoplastic acetylated starch. Chemical Research in Chinese Universities, 25(5), 748-753.
Zhang, Y., Yuan, X., Liu, Q., & Hrymak, A. (2012). The effect of polymeric chain extenders on physical properties of thermoplastic starch and polylactic acid blends. Journal of Polymers and the Environment, 20(2), 315-325. doi:https://doi.org/10.1007/s10924-011-0368-3
CAPTCHA Image
Volume 7, Issue 3
October 2018
Pages 309-322
  • Receive Date: 24 February 2018
  • Revise Date: 01 June 2018
  • Accept Date: 03 June 2018