Optimization of Sesame Oil Organogel Production and Its Effect on Physicochemical and Qualitative Properties of Sohan

Document Type : Original Paper

Authors

1 M.Sc. Graduated, Department of Food Science and Technology, College of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

2 Associated Professor, Department of Food Science and Technology, College of Agriculture and Natural Resources, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

Abstract

This study aimed to optimize organogel production parameters using different amounts of beeswax and mono-di-glyceride and its application in Sohan formulation. Organogel production was performed with different levels of wax (0, 1.67, 5, 8.33 and 10%) and mono-di-glyceride (0, 1.67, 5, 8.33 and 10%). The numerical optimization of the process variables based on maximum organogel firmness, melting point, viscosity of Sohan dough and the lowest amount of released oil from Sohan were determined using the response surface methodology (RSM). Increasing the use of wax and mono-di-glyceride increased the organogel firmness and the viscosity of Sohan dough. On the other hand, increased use of wax and mono-di-glyceride significantly (p < /em><0.05) reduced the amount of oil released from Sohan. The optimum conditions for the organogel production to the preparation of Sohan with desirable physical and chemical quality were 8.82% mono-glyceride and 7.03% wax. The comparison of the predicted sample with the experimental sample showed that there was no significant difference (p < /em><0.05) between the predicted and experimental samples, which indicates the proper fit of the predicted model for Sohan production based on organogel. The comparison of Sohan quality characteristics with the control sample showed that antioxidant activity, moisture content and sensory properties of Sohan samples prepared with optimal organogelol formulation were better than control samples and its ash and oil released was less than the control sample. Therefore, it is possible to replace suitable organogel with fat at optimum levels in the formulation of products such as Sohan without disruptive effect on the quality characteristics of the product.

Keywords

Akhavan, H., & Zarezadeh Mehrizi, R. (2016). Effects of Damask Rose (Rosa damascena Mill.) extract on chemical, microbial, and sensory properties of Sohan (an Iranian Confection) during storage. Journal of food quality and hazards control, 3(3), 97-106.
Barbut, S., Wood, J., & Marangoni, A. (2016). Effects of organogel hardness and formulation on acceptance of frankfurters. Journal of food science, 81(9), C2183-C2188. doi:https://doi.org/10.1111/1750-3841.13409
Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J., & Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International, 85, 67-75. doi:https://doi.org/10.1016/j.foodres.2016.04.01
Co, E. D., & Marangoni, A. G. (2012). Organogels: An alternative edible oil‐structuring method. Journal of the American Oil Chemists' Society, 89(5), 749-780. doi:https://doi.org/10.1007/s11746-012-2049-3
Da Pieve, S., Calligaris, S., Nicoli, M. C., & Marangoni, A. G. (2010). Shear nanostructuring of monoglyceride organogels. Food Biophysics, 5(3), 211-217. doi:https://doi.org/10.1007/s11483-010-9162-3
de Godoi, K. R. R., Basso, R. C., Ming, C. C., da Silva, V. M., da Cunha, R. L., Barrera-Arellano, D., & Ribeiro, A. P. B. (2019). Physicochemical and rheological properties of soybean organogels: Interactions between different structuring agents. Food Research International, 124, 108475. doi:https://doi.org/10.1016/j.foodres.2019.05.023
den Adel, R., Heussen, P. C., & Bot, A. (2010). Effect of water on self-assembled tubules in β-sitosterol+ γ-oryzanol-based organogels. Paper presented at the Journal of Physics: Conference Series.
Duffy, N., Blonk, H. C., Beindorff, C. M., Cazade, M., Bot, A., & Duchateau, G. S. (2009). Organogel‐based emulsion systems, micro‐structural features and impact on in vitro digestion. Journal of the American Oil Chemists' Society, 86(8), 733-741. doi:https://doi.org/10.1007/s11746-009-1405-4
Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A., & Rush, J. W. (2009). Potential food applications of edible oil organogels. Trends in Food Science & Technology, 20(10), 470-480. doi:https://doi.org/10.1016/j.tifs.2009.06.002
Ibrahim, M. M., Hafez, S. A., & Mahdy, M. M. (2013). Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. asian journal of pharmaceutical sciences, 8(1), 48-57. doi:https://doi.org/10.1016/j.ajps.2013.07.006
Iranian National Standardization Organization. (2013). Edible SohanSpecifications and test methods. (ISIRI No. 2612, 1st.Revision). Retrieved from http://standard.isiri.gov.ir/StandardView.aspx?Id=35120 (in Persian)
Jang, A., Bae, W., Hwang, H.-S., Lee, H. G., & Lee, S. (2015). Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food chemistry, 187, 525-529. doi:https://doi.org/10.1016/j.foodchem.2015.04.110
Khavas, Z. (2014). Identification of microorganisms isolated from the final product of 7 Sohan production units from Qom city. ((Unpublished master's thesis)), Shahid Beheshti University of Tehran, (in Persian)
Lawless, H. T., & Heymann, H. (2013). Sensory evaluation of food: principles and practices: Springer Science & Business Media.
Maghsoudloo, Y. (2003). Suhan processing technology: Tehran: Agricultural Sciences Publishing House. (in Persian)
Mashak, Z., Sodagari, H., & Moradi, B. (2014). Microbiological and chemical quality of sohan: an Iranian traditional confectionary product. Journal of food quality and hazards control, 1(2), 56-60.
Mendil, D., Uluözlü, Ö. D., Tüzen, M., & Soylak, M. (2009). Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry. Journal of Hazardous Materials, 165(1-3), 724-728. doi:https://doi.org/10.1016/j.jhazmat.2008.10.046
Mensink, R. P. (2005). Metabolic and health effects of isomeric fatty acids. Current Opinion in Lipidology, 16(1), 27-30.
O'brien, R. D. (2008). Fats and oils: formulating and processing for applications: CRC press.
Park, C., Bemer, H. L., & Maleky, F. (2018). Oxidative stability of rice bran wax oleogels and an oleogel cream cheese product. Journal of the American Oil Chemists' Society, 95(10), 1267-1275. doi:https://doi.org/10.1002/aocs.12095
Patel, A. R., Babaahmadi, M., Lesaffer, A., & Dewettinck, K. (2015). Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. Journal of agricultural and food chemistry, 63(19), 4862-4869. doi:https://doi.org/10.1021/acs.jafc.5b01548
Pernetti, M., van Malssen, K. F., Flöter, E., & Bot, A. (2007). Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid & Interface Science, 12(4-5), 221-231. doi:https://doi.org/10.1016/j.cocis.2007.07.002
Reshma, M., Balachandran, C., Arumughan, C., Sunderasan, A., Sukumaran, D., Thomas, S., & Saritha, S. (2010). Extraction, separation and characterisation of sesame oil lignan for nutraceutical applications. Food chemistry, 120(4), 1041-1046. doi:https://doi.org/10.1016/j.foodchem.2009.11.047
Samateh, M., Sagiri, S. S., & John, G. (2018). Molecular Oleogels: Green Approach in Structuring Vegetable Oils. In Edible Oleogels (pp. 415-438): Elsevier.
Santos, L. A. T., Cruz, R., & Casal, S. (2015). Trans fatty acids in commercial cookies and biscuits: An update of Portuguese market. Food control, 47, 141-146. doi:https://doi.org/10.1016/j.foodcont.2014.06.046
Schaink, H., Van Malssen, K., Morgado-Alves, S., Kalnin, D., & Van der Linden, E. (2007). Crystal network for edible oil organogels: possibilities and limitations of the fatty acid and fatty alcohol systems. Food Research International, 40(9), 1185-1193. doi:https://doi.org/10.1016/j.foodres.2007.06.013
Shariati, F., Azadmard-Damirchi, S., & Shirani Rad, A. H. (2018). Oleogel production from canola oil with mixture of ethyl cellulose and polyglycerol polyricinoleate. Food Science and Technology, 15(81), 77-86. (in Persian)
Toro‐Vazquez, J., Morales‐Rueda, J., Dibildox‐Alvarado, E., Charó‐Alonso, M., Alonzo‐Macias, M., & González‐Chávez, M. (2007). Thermal and textural properties of organogels developed by candelilla wax in safflower oil. Journal of the American Oil Chemists' Society, 84(11), 989-1000. doi:https://doi.org/10.1007/s11746-007-1139-0
Valoppi, F., Calligaris, S., Barba, L., Šegatin, N., Poklar Ulrih, N., & Nicoli, M. C. (2017). Influence of oil type on formation, structure, thermal, and physical properties of monoglyceride‐based organogel. European Journal of Lipid Science and Technology, 119(2), 1500549. doi:https://doi.org/10.1002/ejlt.201500549
Yılmaz, E., & Öğütcü, M. (2014). Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. Journal of the American Oil Chemists' Society, 91(6), 1007-1017. doi:https://doi.org/10.1007/s11746-014-2434-1
CAPTCHA Image
Volume 9, Issue 2
July 2020
Pages 189-202
  • Receive Date: 26 June 2019
  • Revise Date: 27 April 2020
  • Accept Date: 27 May 2020