Improving the Stability and Bioaccessibility of Vitamin D3 in the Structure of Nanoniosomes Designed by Different Surfactants

Document Type : Original Paper

Authors

1 PhD. Student, Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

2 Assistant Professor, Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

3 Professor, Department of Food Nanotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

4 Associate Professor, Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

Due to the high nutritional value of vitamin D3 and its instability in various environmental and processing conditions, the need to preserve it through techniques such as capsulation during nutrification is felt. In this study, vitamin D3 was encapsulated in the structure of niosomes based on various surfactants (Span 60, Tween 20, and 80) and cholesterol with ratios (80:20 and 60:40 w/w) using by thin layer hydration-sonication method. It was found that the niosomes prepared with tween 20 and 80 with a surfactant to cholesterol ratio (80:20 w/w) had the lowest mean particle size distribution, lowest polydispersity index, and the highest zeta potential magnitude. Also, these samples had high encapsulation efficiency and their sizes were in the nanoscale. The stability of vitamin D3 was determined during 1 month at refrigerator condition for nanoniosomes samples based on tween 20 and 80 with a surfactant to cholesterol ratio (80:20 w/w). The results showed that tween 20 based nanoniosomes were more stable than tween 80 based samples during 1 month storage. Also, the bioaccessibility of vitamin D3 after complete digestion was evaluated under simulated gastrointestinal conditions. Based on this, it was found that the bioaccessibility of vitamin D3 in the free form is 58%, which the design of nanoniosomes based on tween significantly improved its bioaccessibility (P<0.05). The highest bioaccessibility of vitamin D3 was obtained for tween 20 nanoniosomes at ratio 80:20 of surfactant to cholesterol.

Keywords

Abdelkader, H., Farghaly, U., & Moharram, H. (2014). Effects of surfactant type and cholesterol level on niosomes physical properties and in vivo ocular performance using timolol maleate as a model drug. Journal of pharmaceutical investigation, 44(5), 329-337. doi:https://doi.org/10.1007/s40005-014-0121-8
Akbari, J., Saeedi, M., Enayatifard, R., Morteza-Semnani, K., Hashemi, S. M. H., Babaei, A., . . . Nokhodchi, A. (2020). Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. Journal of Drug Delivery Science and Technology, 60, 102035. doi:https://doi.org/10.1016/j.jddst.2020.102035
Akbarzadeh, I., Yaraki, M. T., Ahmadi, S., Chiani, M., & Nourouzian, D. (2020). Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation. Advanced Powder Technology, 31(9), 4064-4071. doi:https://doi.org/10.1016/j.apt.2020.08.011
Basiri, L., Rajabzadeh, G., & Bostan, A. (2017). α-Tocopherol-loaded niosome prepared by heating method and its release behavior. Food chemistry, 221, 620-628. doi:https://doi.org/10.1016/j.foodchem.2016.11.129
Bayindir, Z. S., & Yuksel, N. (2010). Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. Journal of pharmaceutical sciences, 99(4), 2049-2060. doi:https://doi.org/10.1002/jps.21944
Brandão-Lima, P. N., Santos, B. d. C., Aguilera, C. M., Freire, A. R. S., Martins-Filho, P. R. S., & Pires, L. V. (2019). Vitamin D food fortification and nutritional status in children: A systematic review of randomized controlled trials. Nutrients, 11(11), 2766. doi:https://doi.org/10.3390/nu11112766
Cano-Sarmiento, C., Téllez-Medina, D., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C., García-Armenta, E., . . . Gutiérrez-López, G. (2018). Zeta potential of food matrices. Food Engineering Reviews, 10(3), 113-138. doi:https://doi.org/10.1007/s12393-018-9176-z
Chanda, H., Das, P., Chakraborty, R., & Ghosh, A. (2011). Development and evaluation of liposomes of fluconazole. J Pharm Biomed Sci, 5(27), 1-9.
Charpashlo, E., Ghorani, B., & Mohebbi, M. (2021). Multilayered electrospinning strategy for increasing the bioaccessibility of lycopene in gelatin-based sub-micron fiber structures. Food hydrocolloids, 113, 106411. doi:https://doi.org/10.1016/j.foodhyd.2020.106411
Eid, R. K., Essa, E. A., & El Maghraby, G. M. (2019). Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharmaceutical development and technology, 24(2), 157-165. doi:https://doi.org/10.1080/10837450.2018.1441302
El-Samaligy, M., Afifi, N., & Mahmoud, E. (2006). Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. International journal of pharmaceutics, 308(1-2), 140-148. doi:https://doi.org/10.1016/j.ijpharm.2005.11.006
Essa, E. A. (2014). Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm, 4(4). doi:http://dx.doi.org/10.22377/ajp.v4i4.289
Estupiñán Sánchez, Ó. R., García Manrique, P., Blanco López, M. d. C., Matos González, M., & Gutiérrez Cervelló, G. (2020). Vitamin D3 loaded niosomes and transfersomes produced by ethanol injection method: identification of the critical preparation step for size control. Foods, 9(10), 1367. doi:https://doi.org/10.3390/foods9101367
Etcheverry, P., Grusak, M. A., & Fleige, L. E. (2012). Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B6, B12, D, and E. Frontiers in physiology, 3, 317. doi:https://doi.org/10.3389/fphys.2012.00317
Gharbavi, M., Johari, B., Mousazadeh, N., Rahimi, B., Leilan, M. P., Eslami, S. S., & Sharafi, A. (2020). Hybrid of niosomes and bio-synthesized selenium nanoparticles as a novel approach in drug delivery for cancer treatment. Molecular Biology Reports, 47(9), 6517-6529. doi:https://doi.org/10.1007/s11033-020-05704-z
Goyal, H., Perisetti, A., Rahman, M. R., Levin, A., & Lippi, G. (2019). Vitamin D and gastrointestinal cancers: a narrative review. Digestive diseases and sciences, 64(5), 1098-1109. doi:https://doi.org/10.1007/s10620-018-5400-1
Gutiérrez, G., Matos, M., Barrero, P., Pando, D., Iglesias, O., & Pazos, C. (2016). Iron-entrapped niosomes and their potential application for yogurt fortification. LWT, 74, 550-556. doi:https://doi.org/10.1016/j.lwt.2016.08.025
Hasan, A. A. (2014). Design and in vitro characterization of small unilamellar niosomes as ophthalmic carrier of dorzolamide hydrochloride. Pharmaceutical development and technology, 19(6), 748-754. doi:https://doi.org/10.3109/10837450.2013.829095
Holick, M. F. (2004). Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. The American journal of clinical nutrition, 80(6), 1678S-1688S. doi:https://doi.org/10.1093/ajcn/80.6.1678S
Holick, M. F. (2007). Vitamin D deficiency. New England journal of medicine, 357(3), 266-281. doi:https://doi.org/10.1056/NEJMra070553
Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food hydrocolloids, 22(7), 1191-1202. doi:https://doi.org/10.1016/j.foodhyd.2007.09.006
Junyaprasert, V. B., Singhsa, P., Suksiriworapong, J., & Chantasart, D. (2012). Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. International journal of pharmaceutics, 423(2), 303-311. doi:https://doi.org/10.1016/j.ijpharm.2011.11.032
Khan, W. A., Butt, M. S., Pasha, I., & Jamil, A. (2020). Microencapsulation of vitamin D in protein matrices: In vitro release and storage stability. Journal of Food Measurement and Characterization, 14(3), 1172-1182. doi:https://doi.org/10.1007/s11694-019-00366-3
Khatoon, M., Shah, K. U., Din, F. U., Shah, S. U., Rehman, A. U., Dilawar, N., & Khan, A. N. (2017). Proniosomes derived niosomes: recent advancements in drug delivery and targeting. Drug delivery, 24(2), 56-69. doi:https://doi.org/10.1080/10717544.2017.1384520
Khoee, S., & Yaghoobian, M. (2017). Chapter 6 - Niosomes: a novel approach in modern drug delivery systems. In E. Andronescu & A. M. Grumezescu (Eds.), Nanostructures for Drug Delivery (pp. 207-237): Elsevier.
Lin, Y., Wang, Y.-H., Yang, X.-Q., Guo, J., & Wang, J.-M. (2016). Corn protein hydrolysate as a novel nano-vehicle: Enhanced physicochemical stability and in vitro bioaccessibility of vitamin D3. LWT-Food Science and Technology, 72, 510-517. doi:https://doi.org/10.1016/j.lwt.2016.05.020
Lindfors, L., Skantze, P., Skantze, U., Westergren, J., & Olsson, U. (2007). Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir, 23(19), 9866-9874. doi:https://doi.org/10.1021/la700811b
Lu, Q., Li, D.-C., & Jiang, J.-G. (2011). Preparation of a tea polyphenol nanoliposome system and its physicochemical properties. Journal of agricultural and food chemistry, 59(24), 13004-13011. doi:https://doi.org/10.1021/jf203194w
Moghassemi, S., & Hadjizadeh, A. (2014). Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of controlled release, 185, 22-36. doi:https://doi.org/10.1016/j.jconrel.2014.04.015
Moghddam, S. R. M., Ahad, A., Aqil, M., Imam, S. S., & Sultana, Y. (2016). Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Materials Science and Engineering: C, 69, 789-797. doi:https://doi.org/10.1016/j.msec.2016.07.043
Mohammadi, A., Jafari, S. M., Mahoonak, A. S., & Ghorbani, M. (2021). Liposomal/nanoliposomal encapsulation of food-relevant enzymes and their application in the food industry. Food and Bioprocess Technology, 14(1), 23-38. doi:https://doi.org/10.1007/s11947-020-02513-x
Mohammadi, M., Ghanbarzadeh, B., & Hamishehkar, H. (2014). Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Advanced pharmaceutical bulletin, 4(Suppl 2), 569-575. doi:https://doi.org/10.5681/apb.2014.084
Mura, S., Pirot, F., Manconi, M., Falson, F., & Fadda, A. M. (2007). Liposomes and niosomes as potential carriers for dermal delivery of minoxidil. Journal of Drug Targeting, 15(2), 101-108. doi:https://doi.org/10.1080/10611860600991993
Nasseri, B. (2005). Effect of cholesterol and temperature on the elastic properties of niosomal membranes. International journal of pharmaceutics, 300(1-2), 95-101. doi:https://doi.org/10.1016/j.ijpharm.2005.05.009
Pardakhty, A., Varshosaz, J., & Rouholamini, A. (2007). In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. International journal of pharmaceutics, 328(2), 130-141. doi:https://doi.org/10.1016/j.ijpharm.2006.08.002
Porter, C. J., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature reviews Drug discovery, 6(3), 231-248. doi:https://doi.org/10.1038/nrd2197
Talebi, V., Ghanbarzadeh, B., Hamishehkar, H., Pezeshki, A., & Ostadrahimi, A. (2021). Effects of different stabilizers on colloidal properties and encapsulation efficiency of vitamin D3 loaded nano-niosomes. Journal of Drug Delivery Science and Technology, 61, 101284. doi:https://doi.org/10.1016/j.jddst.2019.101284
Valer-Martinez, A., Martinez, J. A., Sayon-Orea, C., Galvano, F., Grosso, G., & Bes-Rastrollo, M. (2019). Vitamin D and Cardio-Metabolic Risk Factors in Overweight Adults: An Overview of the Evidence. Current pharmaceutical design, 25(22), 2407-2420. doi:https://doi.org/10.2174/1381612825666190722103919
Waddad, A. Y., Abbad, S., Yu, F., Munyendo, W. L., Wang, J., Lv, H., & Zhou, J. (2013). Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. International journal of pharmaceutics, 456(2), 446-458. doi:https://doi.org/10.1016/j.ijpharm.2013.08.040
Wagh, V. D., & Deshmukh, O. J. (2012). Itraconazole niosomes drug delivery system and its antimycotic activity against Candida albicans. International Scholarly Research Notices, 2012. doi:https://doi.org/10.5402/2012/653465
Wagner, M. E., Spoth, K. A., Kourkoutis, L. F., & Rizvi, S. S. (2016). Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method. Journal of liposome research, 26(4), 261-268. doi:https://doi.org/10.3109/08982104.2015.1088868
Winuprasith, T., Khomein, P., Mitbumrung, W., Suphantharika, M., Nitithamyong, A., & McClements, D. J. (2018). Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food hydrocolloids, 83, 153-164. doi:https://doi.org/10.1016/j.foodhyd.2018.04.047
Xiong, W., Ren, C., Li, J., & Li, B. (2018). Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin–carboxymethylcellulose nanocomplexes and nanoparticles. Food & function, 9(7), 3788-3797. doi:https://doi.org/10.1039/C8FO00300A
CAPTCHA Image
Volume 10, Issue 3
December 2021
Pages 249-260
  • Receive Date: 27 October 2020
  • Revise Date: 09 November 2020
  • Accept Date: 11 November 2020