Optimization of Oil Bulking Agents Based on Inulin, Persian Gum and Alginate by Response Surface Methodology

Document Type : Original Paper

Authors

1 Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

2 Department of Food Nanotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

Nowadays, the food industry is looking for new ways to reduce the levels of saturated and trans fatty acids in processed foods and to produce suitable fat substitutes for high-fat products that provide all or some of the functional properties of fats and have health benefits. In this study, sesame oil in gel matrices for the production of inulin-based oil bulking agents in three levels (0.5 to 1.5%), Persian gum (1 to 2.5%) And alginate was used at three levels (0.5 to 1%) as a new way to improve the fat content of pragmatic food products. Oil migration percentage, thermal stability, color parameters such as L*, a*, and b*, rheological properties such as hardness, adhesiveness, consistency, adhesion force of oil bulking agents produced were investigated. The two-phase structured system was optimized by the response surface method with three-variable responses in maximum thermal stability, lowest oil migration percentage, best color and desirable texture properties, and optimal values in percent concentrations (1.32) of Persian gum (1.5) inulin and (0.96) sodium alginate were obtained. In the study of regression model, hardness, consistency, brightness and yellow color with an explanation coefficient above 85% showed a good fit of the model compared to the experimental data.

Keywords

Main Subjects

© 2022, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Abdollahi, M., Goli, S. A. H., & Soltanizadeh, N. (2019). Investigation of oleogel characteristics in non-thermal process using gelatin and xanthan biopolymers and its fortification with vitamin D. Journal of food science and technology(Iran), 16(89), 249-261. http://fsct.modares.ac.ir/article-7-31070-en.html (in Persian)
Asgari Verjan, S., Salehifar, M., & Shahriari, S. (2018). Basil seed gum and Oregano essential oil seed gum effect on physicochemical properties and sensory properties of reduced-fat chocolate cake. Journal of food science and technology(Iran), 14(72), 357-369. http://fsct.modares.ac.ir/article-7-10853-fa.html (in Persian)
BaratianGhorghi, Z., Faezian, A., Yeganehzad, S., & Hesarinejad, M. A. (2022). Changes in Thermal, Textural, Color and Microstructure Properties of Oleogel Made from Beeswax with Grape Seed Oil under the Effect of Cooling Rate and Oleogelator Concentration. Research and Innovation in Food Science and Technology, 11(1), 43-54. https://doi.org/10.22101/JRIFST.2022.283673.1242
Bemer, H. L., Limbaugh, M., Cramer, E. D., Harper, W. J., & Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International, 85, 67-75. https://doi.org/10.1016/j.foodres.2016.04.016
Bemiller, J. (2010). Carbohydrate Analysis. In (Vol. 2, pp. 147-177). Springer Science+Business Media, LLC. https://doi.org/10.1007/978-1-4419-1478-1_10
Bot, A., Erle, U., Vreeker, R., & Agterof, W. G. M. (2004). Influence of crystallisation conditions on the large deformation rheology of inulin gels. Food Hydrocolloids, 18(4), 547-556. https://doi.org/10.1016/j.foodhyd.2003.09.003
Bourne, M. C. (1978). Texture profile analysis. Food Technology, 32, 62-66.
Cerqueira, M. A., Fasolin, L. H., Picone, C. S. F., Pastrana, L. M., Cunha, R. L., & Vicente, A. A. (2017). Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food Research International, 96, 161-170. https://doi.org/10.1016/j.foodres.2017.03.021
Dassanayake, L. S. K., Kodali, D. R., & Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Current Opinion in Colloid & Interface Science, 16(5), 432-439. https://doi.org/10.1016/j.cocis.2011.05.005
Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2015). The gelation of oil using ethyl cellulose. Carbohydrate Polymers, 117, 869-878. https://doi.org/10.1016/j.carbpol.2014.10.035
Davidovich-Pinhas, M., Barbut, S., & Marangoni, A. G. (2016). Development, Characterization, and Utilization of Food-Grade Polymer Oleogels. Annual Review of Food Science and Technology, 7(1), 65-91. https://doi.org/10.1146/annurev-food-041715-033225
Giacintucci, V., Di Mattia, C. D., Sacchetti, G., Flamminii, F., Gravelle, A. J., Baylis, B., . . . Pittia, P. (2018). Ethylcellulose oleogels with extra virgin olive oil: the role of oil minor components on microstructure and mechanical strength. Food Hydrocolloids, 84, 508-514. https://doi.org/10.1016/j.foodhyd.2018.05.030
Golkar, A., Nasirpour, A., & Keramat, J. (2016). Production of Reduced-fat Mayonnaise Using Electrostatic and Covalent Complexes of β-lactoglobulin and Farsi Gum [Research]. Iranian Journal of Nutrition Sciences & Food Technology, 10(4), 103-114. http://nsft.sbmu.ac.ir/article-1-1695-fa.html (in Persian)
Herrero, A. M., Carmona, P., Jiménez-Colmenero, F., & Ruiz-Capillas, C. (2014). Polysaccharide gels as oil bulking agents: Technological and structural properties. Food Hydrocolloids, 36, 374-381. https://doi.org/10.1016/j.foodhyd.2013.08.008
Jabbari Izadi, A., & Motamedzadegan, A. (2013, October). Investigating the use of gums as a fat substitute in cakes 21st National Congress on Food Science and Technology, October 29-30, 2013,  https://civilica.com/doc/235660 (in Persian)
Jang, A., Bae, W., Hwang, H.-S., Lee, H. G., & Lee, S. (2015). Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food chemistry, 187, 525-529. https://doi.org/10.1016/j.foodchem.2015.04.110
Khalesi, H., Kadkhodaee, R., & Emadzadeh, B. (2016). The effect of Persian gum and thermal process on the properties of emulsion stabilized by whey protein concentrate. Innovative Food Technologies, 4(1), 103-119. https://dx.doi.org/10.22104/jift.2016.363 (in Persian)
Kim, J. Y., Lim, J., Lee, J., Hwang, H. S., & Lee, S. (2017). Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. Journal of food science, 82(2), 445-452. https://doi.org/10.1111/1750-3841.13583
Leal-Calderon, F., Thivilliers, F., & Schmitt, V. (2007). Structured emulsions. Current Opinion in Colloid & Interface Science, 12(4), 206-212. https://doi.org/10.1016/j.cocis.2007.07.003
Limpimwong, W., Kumrungsee, T., Kato, N., Yanaka, N., & Thongngam, M. (2017). Rice bran wax oleogel: A potential margarine replacement and its digestibility effect in rats fed a high-fat diet. Journal of Functional Foods, 39, 250-256. https://doi.org/10.1016/j.jff.2017.10.035
Marangoni, A. G., & Edmund Daniel, C. (2012). Organogels: An Alternative Edible Oil-Structuring Method. Journal of the American Oil Chemists' Society, 89(5), 749-780. https://doi.org/10.1007/s11746-012-2049-3
Martins, A. J., Cerqueira, M. A., Cunha, R. L., & Vicente, A. A. (2017). Fortified beeswax oleogels: effect of β-carotene on the gel structure and oxidative stability. Food & function, 8(11), 4241-4250. https://doi.org/10.1039/C7FO00953D
Martins, A. J., Cerqueira, M. A., Fasolin, L. H., Cunha, R. L., & Vicente, A. A. (2016). Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food Research International, 84, 170-179. https://doi.org/10.1016/j.foodres.2016.03.035
Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018a). Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food chemistry, 246, 137-149. https://doi.org/10.1016/j.foodchem.2017.10.154
Meng, Z., Qi, K., Guo, Y., Wang, Y., & Liu, Y. (2018b). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids, 77, 17-29. https://doi.org/10.1016/j.foodhyd.2017.09.006
Mert, B., & Demirkesen, I. (2016a). Evaluation of highly unsaturated oleogels as shortening replacer in a short dough product. LWT - Food Science and Technology, 68, 477-484. https://doi.org/10.1016/j.lwt.2015.12.063
Mert, B., & Demirkesen, I. (2016b). Reducing saturated fat with oleogel/shortening blends in a baked product. Food chemistry, 199, 809-816. https://doi.org/10.1016/j.foodchem.2015.12.087
Moradabbasi, M., Goli, A., & Fayaz, G. (2021). Effect of sodium caseinate and xanthan gum biopolymers concentration on oleogel production capability based on oil-in-water emulsion system. mdrsjrns, 17(107), 147-159. http://dx.doi.org/10.52547/fsct.17.107.147 (in Persian)
Mozafari, H., Hosseini, E., & Hojat al-Islami, M. (2015, May). Investigating the flow behavior of Zodo oozing gum as a function of concentration and temperature International conference of applied researches in agriculture,  https://civilica.com/l/5518/ (in Persian)
Naji-Tabasi, S., Mahdian, E., Arianfar, A., & Naji-Tabasi, S. (2020). Investigation of Oleogel Properties Prepared by Pickering Emulsion-Templated Stabilized with Solid Particles of Basil Seed Gum and Isolated Soy Protein as a Fat Substitute in Cream. Research and Innovation in Food Science and Technology, 9(3), 269-282. https://dx.doi.org/10.22101/JRIFST.2020.229269.1168 (in Persian)
O'Sullivan, C. M., Barbut, S., & Marangoni, A. G. (2016). Edible oleogels for the oral delivery of lipid soluble molecules: Composition and structural design considerations. Trends in Food Science & Technology, 57, 59-73. https://doi.org/10.1016/j.tifs.2016.08.018
Panagiotopoulou, E., Moschakis, T., & Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part II): Implementation in frankfurter sausages. LWT, 73, 351-356. https://doi.org/10.1016/j.lwt.2016.06.006
Patel, A. R., Cludts, N., Bin Sintang, M. D., Lewille, B., Lesaffer, A., & Dewettinck, K. (2014). Polysaccharide-based oleogels prepared with an emulsion-templated approach. Chemphyschem : a European journal of chemical physics and physical chemistry, 15(16), 3435-3439. https://doi.org/10.1002/cphc.201402473
Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates [10.1039/C5FO01006C]. Food & function, 7(1), 20-29. https://doi.org/10.1039/C5FO01006C
Patel, A. R., Dumlu, P., Vermeir, L., Lewille, B., Lesaffer, A., & Dewettinck, K. (2015). Rheological characterization of gel-in-oil-in-gel type structured emulsions. Food Hydrocolloids, 46, 84-92. https://doi.org/10.1016/j.foodhyd.2014.12.029
Patel, A. R., Rajarethinem, P. S., Cludts, N., Lewille, B., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2015). Biopolymer-Based Structuring of Liquid Oil into Soft Solids and Oleogels Using Water-Continuous Emulsions as Templates. Langmuir, 31(7), 2065-2073. https://doi.org/10.1021/la502829u
Patel, A. R., Rajarethinem, P. S., Grędowska, A., Turhan, O., Lesaffer, A., De Vos, W. H., . . . Dewettinck, K. (2014). Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food & function, 5(4), 645-652. https://doi.org/10.1039/C4FO00034J
Pehlivanoğlu, H., Demirci, M., Toker, O. S., Konar, N., Karasu, S., & Sagdic, O. (2018). Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical reviews in food science and nutrition, 58(8), 1330-1341. https://doi.org/10.1080/10408398.2016.1256866
Pehlivanoglu, H., Ozulku, G., Yildirim, R. M., Demirci, M., Toker, O. S., & Sagdic, O. (2018). Investigating the usage of unsaturated fatty acid-rich and low-calorie oleogels as a shortening mimetics in cake. Journal of Food Processing and Preservation, 42(6), e13621. https://doi.org/10.1111/jfpp.13621
Rahimi, S., & Abbasi, S. (2014). Characterization of some physicochemical and gelling properties of Persian gum. Innovative Food Technologies, 1(4), 13-27. https://dx.doi.org/10.22104/jift.2014.47
Ruiz-Capillas, C., Carmona, P., Jiménez-Colmenero, F., & Herrero, A. M. (2013). Oil bulking agents based on polysaccharide gels in meat batters: a Raman spectroscopic study. Food chemistry, 141(4), 3688-3694. https://doi.org/10.1016/j.foodchem.2013.06.043
Shariati, F., Azadmard-Damirchi, S., & Shirani Rad, A. H. (2020). Effect of ethylcellulose and polyglycerol polyricinoleate concentration on microstructure and oxidative stability of sesame oil oleogel. Journal of Food Processing and Preservation, 11(2), 63-76. https://dx.doi.org/10.22069/ejfpp.2020.14435.1464 (in Persian)
Soltanizadeh, N., & Goli, S. A. H. (2019). Evaluating the Effect of Cooling Rate and Organogelator Concentration on the Textural Properties of Sesame oil Oleogels and Comparison with Animal Fat. Journal of food science and technology(Iran), 16(90), 1-14. http://fsct.modares.ac.ir/article-7-16257-fa.html (in Persian)
Souhan Agini, A., Movahhed, S., & Ahmadi Chenarbon, H. (2017). Effect of Guar and xanthan gums as a part replacement of lipid on the qualitative properties of oily cake. Journal of food science and technology(Iran), 14(69), 295-306. http://fsct.modares.ac.ir/article-7-1745-fa.html (in Persian)
Stortz, T. A., Zetzl, A. K., Barbut, S., Cattaruzza, A., & Marangoni, A. G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology, 24(7), 151-154. https://doi.org/10.1002/lite.201200205
Tan, S.-Y., Wan-Yi Peh, E., Marangoni, A. G., & Henry, C. J. (2017). Effects of liquid oil vs. oleogel co-ingested with a carbohydrate-rich meal on human blood triglycerides, glucose, insulin and appetite [10.1039/C6FO01274D]. Food & function, 8(1), 241-249. https://doi.org/10.1039/C6FO01274D
Trinh, K. T., & Glasgow, S. (2012). On the texture profile analysis test.
Yılmaz, E., & Öğütcü, M. (2014). Properties and Stability of Hazelnut Oil Organogels with Beeswax and Monoglyceride. Journal of the American Oil Chemists' Society, 91(6), 1007-1017. https://doi.org/10.1007/s11746-014-2434-1
Yılmaz, E., & Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception [10.1039/C5RA06689A]. RSC Advances, 5(62), 50259-50267. https://doi.org/10.1039/C5RA06689A
Zameni, A., Kashani nejad, M., & Salehi, F. (2015). The Effect of Thermal Treatments on the Rheological and Textural Properties of Basil Seed Gum. Journal of Food Technology and Nutrition, 12(4), 5-16. https://jftn.srbiau.ac.ir/article_7811_fda5e0909784bcf00eb6bf536ffb8078.pdf (in Persian)
Zameni, A., Kashaninejad, M., Aalami, M., Salehi, F., & Shirvani, G. (2015). Rheological Properties, Texture and Color of Balangu (Lallemantia royleana) Seed Gum Affected by Different Temperatures. Iranian Journal of Biosystems Engineering, 46(2), 185-192. https://dx.doi.org/10.22059/ijbse.2015.55678 (in Persian)
Zetzl, A. K., Marangoni, A. G., & Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food & function, 3(3), 327-337. https://doi.org/10.1039/C2FO10202A
Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of food science, 78(9), C1334–C1339. https://doi.org/10.1111/1750-3841.12175
CAPTCHA Image
Volume 11, Issue 2
September 2022
Pages 123-140
  • Receive Date: 25 July 2021
  • Revise Date: 31 October 2021
  • Accept Date: 10 November 2021