Changes in Thermal, Textural, Color and Microstructure Properties of Oleogel Made from Beeswax with Grape Seed Oil under the Effect of Cooling Rate and Oleogelator Concentration

Document Type : Original Paper

Authors

1 Department of Food Processing, Research Institute of Food Science and Technology, Mashhad, Iran

2 Department of Food Machineries, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

In this study, the crystallization behavior of beeswax in grape seed oil in a wide range of cooling rates of 0.04, 0.08, 0.16, 0.33 and 0.66 (°C/min), from 85 to 25 °C and wax concentrations of 10, 15 and 20% were examined. Thermal behavior characteristics, texture, color and the crystal shapes of the samples were evaluated. The results showed that with increasing the percentage of wax in oleogel, the onset and melting temperatures increased in different treatments, so that the greatest increase was shown in the cooling rate of 0.16 °C/min. Temperatures of 45.90±0.46 and 46.8±0.30 for 10 wax concentration up to 62.70±0.2 and 65.80±0.17 for 20% wax concentration for onset and melting temperatures, respectively were measured. With increasing wax concentration, the factors of stiffness and adhesiveness also increased and this increase was more evident in the cooling rate of 0.66 °C/min, so that the stiffness and adhesiveness parameters increased the most at concentrations of 10% to 20%, respectively. Also, with slow cooling rate, samples with larger crystals were obtained. Color evaluation revealed that with increasing wax concentration, all color parameters except parameter a*, which did not show a significant difference, increased in all cooling rate treatments. The fat crystal engineering approach followed here offers the prospect of obtaining stronger structures at oleogelator concentrations and creating oleogel with desirable properties.

Keywords

Afoakwa, E. O., Paterson, A., Fowler, M., & Vieira, J. (2008). Particle size distribution and compositional effects on textural properties and appearance of dark chocolates. Journal of Food Engineering, 87(2), 181-190. doi:https://doi.org/10.1016/j.jfoodeng.2007.11.025
Cerqueira, M. A., Fasolin, L. H., Picone, C. S., Pastrana, L. M., Cunha, R. L., & Vicente, A. A. (2017). Structural and mechanical properties of organogels: Role of oil and gelator molecular structure. Food research international, 96, 161-170. doi:https://doi.org/10.1016/j.foodres.2017.03.021
Dassanayake, L. S. K., Kodali, D. R., & Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Current opinion in colloid & interface science, 16(5), 432-439. doi:https://doi.org/10.1016/j.cocis.2011.05.005
Dassanayake, L. S. K., Kodali, D. R., Ueno, S., & Sato, K. (2009). Physical properties of rice bran wax in bulk and organogels. Journal of the American Oil Chemists' Society, 86(12), 1163. doi:https://doi.org/10.1007/s11746-009-1464-6
Emmons, C. L., Peterson, D. M., & Paul, G. L. (1999). Antioxidant Capacity of Oat (Avena sativa L.) Extracts. 2. In Vitro Antioxidant Activity and Contents of Phenolic and Tocol Antioxidants. Journal of Agricultural and Food Chemistry, 47(12), 4894-4898. doi:https://doi.org/10.1021/jf990530i
Giacomozzi, A. S., Palla, C. A., Carrín, M. E., & Martini, S. (2019). Physical properties of monoglycerides oleogels modified by concentration, cooling rate, and high‐intensity ultrasound. Journal of food science, 84(9), 2549-2561. doi:https://doi.org/10.1111/1750-3841.14762
Hwang, H. S., Kim, S., Singh, M., Winkler‐Moser, J. K., & Liu, S. X. (2012). Organogel formation of soybean oil with waxes. Journal of the American Oil Chemists' Society, 89(4), 639-647. doi:https://doi.org/10.1007/s11746-011-1953-2
Jana, S., & Martini, S. (2014). Effect of High-Intensity Ultrasound and Cooling Rate on the Crystallization Behavior of Beeswax in Edible Oils. Journal of Agricultural and Food Chemistry, 62(41), 10192-10202. doi:https://doi.org/10.1021/jf503393h
Lim, J., Hwang, H.-S., & Lee, S. (2017). Oil-structuring characterization of natural waxes in canola oil oleogels: rheological, thermal, and oxidative properties. Applied Biological Chemistry, 60(1), 17-22. doi:https://doi.org/10.1007/s13765-016-0243-y
Martini, S., Herrera, M. L., & Hartel, R. W. (2002). Effect of cooling rate on crystallization behavior of milk fat fraction/sunflower oil blends. Journal of the American Oil Chemists' Society, 79(11), 1055-1062. doi:https://doi.org/10.1007/s11746-002-0603-6
Martins, A. J., Cerqueira, M. A., Fasolin, L. H., Cunha, R. L., & Vicente, A. A. (2016). Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food research international, 84, 170-179. doi:https://doi.org/10.1016/j.foodres.2016.03.035
Moghtadaei, M., Soltanizadeh, N., & Goli, S. A. H. (2019). Evaluating the Effect of Cooling Rate and Organogelator Concentration on the Textural Properties of Sesame oil Oleogels and Comparison with Animal Fat. Food Science and Technology, 16(90), 1-14. (in Persian)
Movahed, S., & Ghavami, M. (2007). Comparative and identification of fatty acid composition of Iranian and importing grape seed oil. Pajouhesh and Sazandegi, 20(2(75)), 8-16. (in Persian)
Naji-Tabasi, S., Mahdian, E., Arianfar, A., & Naji-Tabasi, S. (2020). Investigation of Oleogel Properties Prepared by Pickering Emulsion-Templated Stabilized with Solid Particles of Basil Seed Gum and Isolated Soy Protein as a Fat Substitute in Cream. Research and Innovation in Food Science and Technology, 9(3), 267-280. doi:https://dx.doi.org/10.22101/jrifst.2020.229269.1168 (in Persian)
Öğütcü, M., Arifoğlu, N., & Yılmaz, E. (2015). Storage stability of cod liver oil organogels formed with beeswax and carnauba wax. International Journal of Food Science & Technology, 50(2), 404-412. doi:https://doi.org/10.1111/ijfs.12612
Öǧütcü, M., & Yılmaz, E. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites, 65(3), e040. doi:https://doi.org/10.3989/gya.0349141
Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 411, 114-121. doi:https://doi.org/10.1016/j.jcis.2013.08.039
Rogers, M. A., Strober, T., Bot, A., Toro-Vazquez, J. F., Stortz, T., & Marangoni, A. G. (2014). Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science, 2(1), 22-31. doi:https://doi.org/10.1016/j.ijgfs.2014.05.001
Toro-Vazquez, J. F., Mauricio-Pérez, R., González-Chávez, M. M., Sánchez-Becerril, M., Ornelas-Paz, J. d. J., & Pérez-Martínez, J. D. (2013). Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food research international, 54(2), 1360-1368. doi:https://doi.org/10.1016/j.foodres.2013.09.046
Toro-Vazquez, J. F., Morales-Rueda, J., Mallia, V. A., & Weiss, R. G. (2010). Relationship Between Molecular Structure and Thermo-mechanical Properties of Candelilla Wax and Amides Derived from (R)-12-Hydroxystearic Acid as Gelators of Safflower Oil. Food Biophysics, 5(3), 193-202. doi:https://doi.org/10.1007/s11483-010-9159-y
Toro-Vazquez, J. F., Morales-Rueda, J. A., Dibildox-Alvarado, E., Charó-Alonso, M., Alonzo-Macias, M., & González-Chávez, M. M. (2007). Thermal and Textural Properties of Organogels Developed by Candelilla Wax in Safflower Oil. Journal of the American Oil Chemists' Society, 84(11), 989-1000. doi:https://doi.org/10.1007/s11746-007-1139-0
Yi, B., Kim, M.-J., Lee, S. Y., & Lee, J. (2017). Physicochemical properties and oxidative stability of oleogels made of carnauba wax with canola oil or beeswax with grapeseed oil. Food Science and Biotechnology, 26(1), 79-87. doi:https://doi.org/10.1007/s10068-017-0011-8
Yılmaz, E., & Öğütcü, M. (2014). Properties and Stability of Hazelnut Oil Organogels with Beeswax and Monoglyceride. Journal of the American Oil Chemists' Society, 91(6), 1007-1017. doi:https://doi.org/10.1007/s11746-014-2434-1
Yilmaz, F., & Dagdemir, E. (2012). The effects of beeswax coating on quality of Kashar cheese during ripening. International Journal of Food Science & Technology, 47(12), 2582-2589. doi:https://doi.org/10.1111/j.1365-2621.2012.03137.x
CAPTCHA Image
Volume 11, Issue 1
June 2022
Pages 43-54
  • Receive Date: 05 May 2021
  • Revise Date: 08 September 2021
  • Accept Date: 14 September 2021