Analyzing the Effects of Agar Gum on the Textural and Rheological Properties of Cold-set whey Protein Isolate Emulsion-filled Gel

Document Type : Original Paper

Authors

1 Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad (FUM), Mashhad, Iran

2 Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), Mashhad, Iran

Abstract

This study evaluated the impact of agar gum (AG) (0-0.7% w/w) on the textural, rheological, and held water characteristics of cold-set whey protein isolate emulsion filled gel (EFG). Steady shear results showed that EFGs had a shear-thinning flow behavior, and with increasing AG concentration, the consistency coefficient increased from 339.12 Pa.sn (no AG) to 951.46 Pa.sn (0.7% AG). The amplitude sweep assay illustrated that the AG level had a meaningful effect on the rheological parameters so that GʹLVE, GʹʹLVE, Gf and tF increased, and Tan dLVE decreased with an increase in the AG level. Based on the frequency sweep test, adding AG significantly enhanced the magnitudes of kʹ and kʹʹ, so that their values increased from 5311.80 and 939.90 Pa in the control to 25080.60 and 3574.90 Pa in the 0.7% AG-contained sample, respectively. Also, the parameters of the strength of the network (5380.10-25344.30 Pa.s1/z), the network extension (10.05-15.59) and the extent of departure from the Cox-Merz rule (3476.80 to 21509.44 Pa) increased directly as a result of the rise in AG content. In the composite EFG with 0.7% AG, the highest initial tangent modulus and fracture stress were recorded, which showed lower fracture strain and equal fracture energy in comparison to the control sample. Research results also showed that the held water decreased meaningfully at a high concentration of AG. These results add to the knowledge of the protein-polysaccharide interactions that can be helpful in the production of new functional foods.

Keywords

Main Subjects

© 2022, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Alavi, F., Emam-Djomeh, Z., Mohammadian, M., Salami, M., & Moosavi-Movahedi, A. A. (2020). Physico-chemical and foaming properties of nanofibrillated egg white protein and its functionality in meringue batter. Food Hydrocolloids, 101, 105554. https://doi.org/10.1016/j.foodhyd.2019.105554
Alavi, F., Momen, S., Emam-Djomeh, Z., Salami, M., & Moosavi-Movahedi, A. A. (2018). Radical cross-linked whey protein aggregates as building blocks of non-heated cold-set gels. Food Hydrocolloids, 81, 429-441. https://doi.org/10.1016/j.foodhyd.2018.03.016
Alghooneh, A., Razavi, S. M., & Kasapis, S. (2018). Hydrocolloid clustering based on their rheological properties. Journal of texture studies, 49(6), 619-638.
Alghooneh, A., Razavi, S. M. A., & Behrouzian, F. (2017). Rheological characterization of hydrocolloids interaction: A case study on sage seed gum-xanthan blends. Food Hydrocolloids, 66, 206-215. https://doi.org/10.1016/j.foodhyd.2016.11.022
Anvari, M., & Joyner, H. S. (2017). Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions. Food Research International, 102, 1-7. https://doi.org/10.1016/j.foodres.2017.09.085
Babaei, J., Mohammadian, M., & Madadlou, A. (2019). Gelatin as texture modifier and porogen in egg white hydrogel. Food Chemistry, 270, 189-195. https://doi.org/10.1016/j.foodchem.2018.07.109
Behrouzain, F., & Razavi, S. M. A. (2020). Structure-rheology relationship of basil seed gum-whey protein isolate mixture: Effect of thermal treatment and biopolymer ratio. Food Hydrocolloids, 102, 105608. https://doi.org/10.1016/j.foodhyd.2019.105608
Behrouzain, F., Razavi, S. M. A., & Joyner, H. (2020). Mechanisms of whey protein isolate interaction with basil seed gum: Influence of pH and protein-polysaccharide ratio. Carbohydrate Polymers, 232, 115775. https://doi.org/10.1016/j.carbpol.2019.115775
Çakır, E., & Foegeding, E. A. (2011). Combining protein micro-phase separation and protein–polysaccharide segregative phase separation to produce gel structures. Food Hydrocolloids, 25(6), 1538-1546. https://doi.org/10.1016/j.foodhyd.2011.02.002
Chaux-Gutiérrez, A. M., Pérez-Monterroza, E. J., & Mauro, M. A. (2019). Rheological and structural characterization of gels from albumin and low methoxyl amidated pectin mixtures. Food Hydrocolloids, 92, 60-68. https://doi.org/10.1016/j.foodhyd.2019.01.025
Costell, E., Peyrolon, M., & Duran, L. (2000). Note. Influence of texture and type of hydrocolloid on perception of basic tastes in carrageenan and gellan gels Nota. Influencia de la textura y del tipo de hidrocoloide en la percepción de los gustos fundamentales en geles de carragenato y de gelana. Food science and technology international, 6(6), 495-499.
Cox, W. P., & Merz, E. H. (1958). Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28, 619-622. https://doi.org/10.1002/pol.1958.1202811812
de Jong, S., & van de Velde, F. (2007). Charge density of polysaccharide controls microstructure and large deformation properties of mixed gels. Food Hydrocolloids, 21(7), 1172-1187. https://doi.org/10.1016/j.foodhyd.2006.09.004
Devezeaux de Lavergne, M., Strijbosch, V. M., Van den Broek, A. W., Van de Velde, F., & Stieger, M. (2016). Uncoupling the impact of fracture properties and composition on sensory perception of emulsion‐filled gels. Journal of texture studies, 47(2), 92-111.
Farjami, T., & Madadlou, A. (2019). An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends in Food Science & Technology, 86, 85-94. https://doi.org/10.1016/j.tifs.2019.02.043
Gwartney, E., Larick, D., & Foegeding, E. (2004). Sensory texture and mechanical properties of stranded and particulate whey protein emulsion gels. Journal of food science, 69(9), S333-S339.
Hesarinejad, M. A., Koocheki, A., & Razavi, S. M. A. (2014). Dynamic rheological properties of Lepidium perfoliatum seed gum: Effect of concentration, temperature and heating/cooling rate. Food Hydrocolloids, 35, 583-589. https://doi.org/10.1016/j.foodhyd.2013.07.017
Heydari, A., & Razavi, S. M. A. (2021). Evaluating high pressure-treated corn and waxy corn starches as novel fat replacers in model low-fat O/W emulsions: A physical and rheological study. International Journal of Biological Macromolecules, 184, 393-404. https://doi.org/10.1016/j.ijbiomac.2021.06.052
Jang, B.-K., & Matsubara, H. (2005). Influence of porosity on hardness and Young's modulus of nanoporous EB-PVD TBCs by nanoindentation. Materials Letters, 59(27), 3462-3466. https://doi.org/10.1016/j.matlet.2005.06.014
Karaman, S., Yilmaz, M. T., & Kayacier, A. (2013). Mathematical approach for two component modeling of salep–starch mixtures using central composite rotatable design: Part II. Dynamic oscillatory shear properties and applicability of Cox–Merz rule. Food Hydrocolloids, 31(2), 277-288. https://doi.org/10.1016/j.foodhyd.2012.10.002
Kazemi-Taskooh, Z., & Varidi, M. (2021). Designation and characterization of cold-set whey protein-gellan gum hydrogel for iron entrapment. Food Hydrocolloids, 111, 106205. https://doi.org/10.1016/j.foodhyd.2020.106205
Khalesi, H., Emadzadeh, B., Kadkhodaee, R., & Fang, Y. (2019). Effect of Persian gum on whey protein concentrate cold-set emulsion gel: Structure and rheology study. International Journal of Biological Macromolecules, 125, 17-26. https://doi.org/10.1016/j.ijbiomac.2018.12.051
Khubber, S., Chaturvedi, K., Thakur, N., Sharma, N., & Yadav, S. K. (2021). Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocolloids, 111, 106240. https://doi.org/10.1016/j.foodhyd.2020.106240
Kurt, A., Cengiz, A., & Kahyaoglu, T. (2016). The effect of gum tragacanth on the rheological properties of salep based ice cream mix. Carbohydrate Polymers, 143, 116-123. https://doi.org/10.1016/j.carbpol.2016.02.018
Li, R., Cheng, Y., Tang, N., Wu, L., Nirasawa, S., Jia, X., & Cao, W. (2020). Rheological, structural and physicochemical characteristics of heat-induced egg albumin/sesbania gum mixed gels. International Journal of Biological Macromolecules, 163, 87-95. https://doi.org/10.1016/j.ijbiomac. 2020.06.172
Liu, F., Liang, X., Yan, J., Zhao, S., Li, S., Liu, X., . . . McClements, D. J. (2022). Tailoring the properties of double-crosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 280, 121265. https://doi.org/10.1016/j.biomaterials.2021.121265
Lu, Y., Mao, L., Hou, Z., Miao, S., & Gao, Y. (2019). Development of Emulsion Gels for the Delivery of Functional Food Ingredients: from Structure to Functionality. Food Engineering Reviews, 11(4), 245-258. https://doi.org/10.1007/s12393-019-09194-z
Luo, N., Ye, A., Wolber, F. M., & Singh, H. (2020). In-mouth breakdown behaviour and sensory perception of emulsion gels containing active or inactive filler particles loaded with capsaicinoids. Food Hydrocolloids, 108,106076. https://doi.org/10.1016/j.foodhyd.2020.106076
Mao, L., Miao, S., Yuan, F., & Gao, Y. (2018). Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Research International, 103, 1-7. https://doi.org/10.1016/j.foodres.2017.10.024
Munialo, C. D., van der Linden, E., Ako, K., Nieuwland, M., Van As, H., & de Jongh, H. H. J. (2016). The effect of polysaccharides on the ability of whey protein gels to either store or dissipate energy upon mechanical deformation. Food Hydrocolloids, 52, 707-720. https://doi.org/10.1016/j.foodhyd.2015.08.013
Naji-Tabasi, S., & Razavi, S. M. A. (2017). New studies on basil (Ocimum bacilicum L.) seed gum: Part III- Steady and dynamic shear rheology. Food Hydrocolloids, 67, 243-250. https://doi.org/10.1016/j.foodhyd.2015.12.020
Oliver, L., Scholten, E., & van Aken, G. A. (2015). Effect of fat hardness on large deformation rheology of emulsion-filled gels. Food Hydrocolloids, 43, 299-310. https://doi.org/10.1016/j.foodhyd.2014.05.031
Pandey, S., Senthilguru, K., Uvanesh, K., Sagiri, S. S., Behera, B., Babu, N., . . . Banerjee, I. (2016). Natural gum modified emulsion gel as single carrier for the oral delivery of probiotic-drug combination. Int J Biol Macromol, 92, 504-514. https://doi.org/10.1016/j.ijbiomac.2016.07.053
Pires Vilela, J. A., Cavallieri, Â. L. F., & Lopes da Cunha, R. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate-gellan gum. Food Hydrocolloids, 25(7), 1710-1718. https://doi.org/10.1016/j.foodhyd.2011.03.012
Rao, M., & Cooley, H. (1992). Rheological behavior of tomato pastes in steady and dynamic shear. Journal of texture studies, 23(4), 415-425.
Razavi, S. M. A., Alghooneh, A., & Behrouzian, F. (2018). Influence of temperature on sage seed gum (Salvia macrosiphon) rheology in dilute and concentrated regimes. Journal of Dispersion Science and Technology, 39(7), 982-995. https://doi.org/10.1080/01932691.2017.1379020
Sagdic, O., Toker, O. S., Polat, B., Arici, M., & Yilmaz, M. T. (2015). Bioactive and rheological properties of rose hip marmalade. J Food Sci Technol, 52(10), 6465-6474. https://doi.org/10.1007/s13197-015-1753-z
Sow, L. C., Tan, S. J., & Yang, H. (2019). Rheological properties and structure modification in liquid and gel of tilapia skin gelatin by the addition of low acyl gellan. Food Hydrocolloids, 90, 9-18. https://doi.org/10.1016/j.foodhyd.2018.12.006
Torres, O., Murray, B., & Sarkar, A. (2016). Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology, 55, 98-108. https://doi.org/10.1016/j.tifs.2016.07.006
van den Berg, L., van Vliet, T., van der Linden, E., van Boekel, M. A. J. S., & van de Velde, F. (2007). Serum release: The hidden quality in fracturing composites. Food Hydrocolloids, 21(3), 420-432. https://doi.org/10.1016/j.foodhyd.2006.05.002
Wang, W., Shen, M., Jiang, L., Song, Q., Liu, S., & Xie, J. (2020). Influence of Mesona blumes polysaccharide on the gel properties and microstructure of acid-induced soy protein isolate gels. Food Chemistry, 313, 126125. https://doi.org/10.1016/j.foodchem.2019.126125
Xiong, W., Ren, C., Tian, M., Yang, X., Li, J., & Li, B. (2017). Complex coacervation of ovalbumin-carboxymethylcellulose assessed by isothermal titration calorimeter and rheology: Effect of ionic strength and charge density of polysaccharide. Food Hydrocolloids, 73, 41-50. https://doi.org/10.1016/j.foodhyd.2017.06.031
Yang, Q., Wang, Y.-R., Li-Sha, Y.-J., & Chen, H.-Q. (2021). The effects of basil seed gum on the physicochemical and structural properties of arachin gel. Food Hydrocolloids, 110, 106189. https://doi.org/10.1016/j.foodhyd.2020.106189
Zhang, C., An, D., Xiao, Q., Weng, H., Zhang, Y., Yang, Q., & Xiao, A. (2020). Preparation, characterization, and modification mechanism of agar treated with hydrogen peroxide at different temperatures. Food Hydrocolloids, 101, 105527. https://doi.org/10.1016/j.foodhyd.2019.105527
Zhang, S., & Vardhanabhuti, B. (2014). Acid-induced gelation properties of heated whey protein-pectin soluble complex (Part II): Effect of charge density of pectin. Food Hydrocolloids, 39, 95-103. https://doi.org/10.1016/j.foodhyd.2013.12.020
Zhao, H., Chen, J., Hemar, Y., & Cui, B. (2020). Improvement of the rheological and textural properties of calcium sulfate-induced soy protein isolate gels by the incorporation of different polysaccharides. Food Chem, 310, 125983. https://doi.org/10.1016/j.foodchem.2019.125983
Zheng, H., Beamer, S. K., Matak, K. E., & Jaczynski, J. (2019). Effect of κ-carrageenan on gelation and gel characteristics of Antarctic krill (Euphausia superba) protein isolated with isoelectric solubilization/precipitation. Food Chem, 278, 644-652. https://doi.org/10.1016/j.foodchem.2018.11.080
CAPTCHA Image
Volume 11, Issue 3
November 2022
Pages 257-274
  • Receive Date: 06 December 2021
  • Revise Date: 18 January 2022
  • Accept Date: 30 January 2022