Isolation, Identification and Determination of Antimicrobial Susceptibility of Arcobacter Butzleri Isolated from Chicken Carcass in Tonekabon

Document Type : Original Paper


1 Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran

2 Department of Microbiology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran

3 Department of Bacteriology, Faculty of Veterinary Medicine, University of New Technologies, Amol, Iran

4 Department of Microbiology, Faculty of Basic Sciences, Ahar Branch, Islamic Azad University, Ahar, Iran


Arcobacter butzelri, is the most common genus of the Campylobacteriaceae family, known as an emerging zoonotic pathogen. The aim of this study was to isolate, identify and determine the antimicrobial susceptibility of Arcobacter butzelri strains to antibiotics used in the treatment of infectious diseases in humans and animals. Therefore, 297 samples of chicken carcasses were collected in slaughterhouses of Tonekabon city. Suspected colonies were isolated and identified using biochemical test and polymerase chain reaction (PCR) technique was used to confirm the isolates. The pattern of antibiotic resistance of Arcobacter Butzleri to 16 antibiotics was determined by disk diffusion method and the minimum inhibitory concentration of the strains to tetracycline, erythromycin and gentamicin was determined by Broth Macrodilution (Tube) method. All of the 36 strains which were isolated and identified were resistant to penicillin 100%, ampicillin 100%, oxacillin 100% and also to resistance to trimethoprim/sulfamethoxazole 94.4%, ciprofloxacin 94.4%, nalidixic acid 91.7%, azithromycin 91.7% and amoxicillin 80.6% were evaluated. Of the 36 isolates tested, all isolates were sensitive to gentamicin 100%. 72% of strains had MIC≥128 (g/mL) and MBC≥256 (µg/mL) for tetracycline antibiotics. There were also 10 MDR strains (27.77%) and 24 XDR strains (66.66%). The findings indicate the presence of Arcobacter butzelri in chicken carcasses and the high prevalence of antimicrobial resistance to various antibiotics in this area.


  1. Abay, S., Kayman, T., Hizlisoy, H., & Aydin, F. (2012). In vitro antibacterial susceptibility of Arcobacter butzleri isolated from different sources. Journal of Veterinary Medical Science, 74(5), 613-616. doi:

    Adam, Z., Whiteduck-Léveillée, K., Cloutier, M., Chen, W., Lewis, C. T., Lévesque, C. A., . . . Talbot, G. (2014). Draft genome sequences of two Arcobacter strains isolated from human feces. Genome announcements, 2(2), e00113-00114. doi:https://10.1128/genomeA.00113-14

    Adesiji, Y., Coker, A., & Oloke, J. (2011). Detection of Arcobacter in feces of healthy chickens in Osogbo, Nigeria. Journal of food protection, 74(1), 119-121. doi:

    Arias, M. L., Cid, A., & Fernandéz, H. (2011). Arcobacter butzleri: first isolation report from chicken carcasses in costa rica. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 42(2), 703-706. doi:

    Aski, H. S., Tabatabaei, M., Khoshbakht, R., & Raeisi, M. (2016). Occurrence and antimicrobial resistance of emergent Arcobacter spp. isolated from cattle and sheep in Iran. Comparative immunology, microbiology and infectious diseases, 44, 37-40. doi:

    Atabay, H. I., Corry, J. E., & On, S. L. (1998). Diversity and prevalence of Arcobacter spp. in broiler chickens. J Appl Microbiol, 84(6), 1007-1016. doi:

    Baserisalehi, M., Bahador, N., & Kapadnis, B. (2004). A novel method for isolation of Campylobacter spp. from environmental samples, involving sample processing, and blood‐and antibiotic‐free medium. Journal of Applied Microbiology, 97(4), 853-860. doi:

    Bogantes, E. V., Fallas-Padilla, K. L., Rodriguez-Rodriguez, C. E., Jaramillo, H. F., & Echandi, M. L. A. (2015). Zoonotic species of the genus Arcobacter in poultry from different regions of Costa Rica. Journal of food protection, 78(4), 808-811. doi:

    Brückner, V., Fiebiger, U., Ignatius, R., Friesen, J., Eisenblätter, M., Höck, M., . . . Gölz, G. (2020). Characterization of Arcobacter strains isolated from human stool samples: results from the prospective German prevalence study Arcopath. Gut pathogens, 12(1), 3. doi:

    1. (2010). National An timicrobial Resistance Monitoring System for Enteric Bacter ia (NARMS): Human Isolates Fina l Report, 2009.

    Çelik, E., & Otlu, S. (2020). Isolation of Arcobacter spp. and identification of isolates by multiplex PCR from various domestic poultry and wild avian species. Annals of Microbiology, 70(1), 60. doi:

    Chieffi, D., Fanelli, F., & Fusco, V. (2020). Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2071-2109. doi:

    Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews : MMBR, 74(3), 417-433. doi:

    Dekker, D., Eibach, D., Boahen, K. G., Akenten, C. W., Pfeifer, Y., Zautner, A. E., . . . Flieger, A. (2019). Fluoroquinolone-resistant Salmonella enterica, Campylobacter spp., and Arcobacter butzleri from local and imported poultry meat in Kumasi, Ghana. Foodborne pathogens and disease, 16(5), 352-358. doi:

    Ertas, N., Dogruer, Y., Gonulalan, Z., Guner, A., & Ulger, I. (2010). Prevalence of Arcobacter species in drinking water, spring water, and raw milk as determined by multiplex PCR. Journal of food protection, 73(11), 2099-2102. doi:

    Fanelli, F., Di Pinto, A., Mottola, A., Mule, G., Chieffi, D., Baruzzi, F., . . . Fusco, V. (2019). Genomic Characterization of Arcobacter butzleri Isolated From Shellfish: Novel Insight Into Antibiotic Resistance and Virulence Determinants. Frontiers in microbiology, 10, 670-670. doi:

    Ferreira, S., Luís, Â., Oleastro, M., Pereira, L., & Domingues, F. C. (2019). A meta-analytic perspective on Arcobacter spp. antibiotic resistance. J Glob Antimicrob Resist, 16, 130-139. doi:

    Fisher, J. C., Levican, A., Figueras, M. J., & McLellan, S. L. (2014). Population dynamics and ecology of Arcobacter in sewage. Frontiers in microbiology, 5. doi:

    Ghaju Shrestha, R., Tanaka, Y., Sherchand, J. B., & Haramoto, E. (2019). Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal. Pathogens, 8(3). doi:

    Giacometti, F., Lucchi, A., Di Francesco, A., Delogu, M., Grilli, E., Guarniero, I., . . . Serraino, A. (2015). Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii Circulation in a Dairy Farm and Sources of Milk Contamination. Appl Environ Microbiol, 81(15), 5055-5063. doi:

    Gilbert, M. J., Duim, B., Zomer, A. L., & Wagenaar, J. A. (2019). Living in Cold Blood: Arcobacter, Campylobacter, and Helicobacter in Reptiles. Front Microbiol, 10, 1086. doi:

    González, A., Bayas Morejón, I. F., & Ferrús, M. A. (2017). Isolation, molecular identification and quinolone-susceptibility testing of Arcobacter spp. isolated from fresh vegetables in Spain. Food Microbiol, 65, 279-283. doi:

    Ho, H. T., Lipman, L. J., & Gaastra, W. (2008). The introduction of Arcobacter spp. in poultry slaughterhouses. Int J Food Microbiol, 125(3), 223-229. doi:

    Houf, K., Devriese, L. A., zutter, L. D., Hoof, J. V., & Vandamme, P. (2001). Susceptibility of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii to Antimicrobial Agents Used in Selective Media. Journal of clinical microbiology, 39(4), 1654-1656. doi:

    Isidro, J., Ferreira, S., Pinto, M., Domingues, F., Oleastro, M., Gomes, J. P., & Borges, V. (2020). Virulence and antibiotic resistance plasticity of Arcobacter butzleri: Insights on the genomic diversity of an emerging human pathogen. Infection, Genetics and Evolution, 80, 104213. doi:

    Iwu, C. D., Ekundayo, T. C., & Okoh, A. I. (2021). A Systematic Analysis of Research on Arcobacter: Public Health Implications from a Food-Environment Interphase Perspective. Foods, 10(7). doi:

    Jalava, K., Rintala, H., Ollgren, J., Maunula, L., Gomez-Alvarez, V., Revez, J., . . . Pitkänen, T. (2014). Novel Microbiological and Spatial Statistical Methods to Improve Strength of Epidemiological Evidence in a Community-Wide Waterborne Outbreak. PLoS One, 9(8), e104713. doi:

    Kayman, T., Abay, S., Hizlisoy, H., Atabay, H., Diker, K. S., & Aydin, F. (2012). Emerging pathogen Arcobacter spp. in acute gastroenteritis: molecular identification, antibiotic susceptibilities and genotyping of the isolated arcobacters. J Med Microbiol, 61(Pt 10), 1439-1444. doi:

    Kim, N. H., Park, S. M., Kim, H. W., Cho, T. J., Kim, S. H., Choi, C., & Rhee, M. S. (2019). Prevalence of pathogenic Arcobacter species in South Korea: Comparison of two protocols for isolating the bacteria from foods and examination of nine putative virulence genes. Food microbiology, 78, 18-24. doi:

    Laishram, M., Rathlavath, S., Lekshmi, M., Kumar, S., & Nayak, B. B. (2016). Isolation and characterization of Arcobacter spp. from fresh seafood and the aquatic environment. Int J Food Microbiol, 232, 87-89. doi:

    Langton, K. P., Henderson, P. J. F., & Herbert, R. B. (2005). Antibiotic resistance: multidrug efflux proteins, a common transport mechanism? Natural product reports, 22(4), 439-451. doi:

    Levican, A., Rubio-Arcos, S., Martinez-Murcia, A., Collado, L., & Figueras, M. J. (2015). Arcobacter ebronensis sp. nov. and Arcobacter aquimarinus sp. nov., two new species isolated from marine environment. Systematic and applied microbiology, 38(1), 30-35. doi:

    Noto, A. M. D., Sciortino, S., Cardamone, C., Ciravolo, C., Napoli, C., Alio, V., . . . Costa, A. (2018). Detection of Arcobacter spp. in food products collected from Sicilia region: A preliminary study. Italian journal of food safety, 7(2), 7171-7171. doi:

    Okeke, I. N., Klugman, K. P., Bhutta, Z. A., Duse, A. G., Jenkins, P., O'Brien, T. F., . . . Laxminarayan, R. (2005). Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infect Dis, 5(9), 568-580. doi:

    Pasticci, M. B., Moretti, A., Stagni, G., Ravasio, V., Soavi, L., Raglio, A., . . . Baldelli, F. (2011). Bactericidal activity of oxacillin and glycopeptides against Staphylococcus aureus in patients with endocarditis: Looking for a relationship between tolerance and outcome. Annals of clinical microbiology and antimicrobials, 10(1), 26. doi:

    Petersen, R. F., Harrington, C. S., Kortegaard, H. E., & On, S. L. (2007). A PCR-DGGE method for detection and identification of Campylobacter, Helicobacter, Arcobacter and related Epsilobacteria and its application to saliva samples from humans and domestic pets. J Appl Microbiol, 103(6), 2601-2615. doi:

    Rahimi, E. (2014). Prevalence and antimicrobial resistance of Arcobacter species isolated from poultry meat in Iran. Br Poult Sci, 55(2), 174-180. doi:

    Ramees, T. P., Dhama, K., Karthik, K., Rathore, R. S., Kumar, A., Saminathan, M., . . . Singh, R. K. (2017). Arcobacter: an emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control - a comprehensive review. Vet Q, 37(1), 136-161. doi:

    Rathlavath, S., Kohli, V., Singh, A. S., Lekshmi, M., Tripathi, G., Kumar, S., & Nayak, B. B. (2017). Virulence genotypes and antimicrobial susceptibility patterns of Arcobacter butzleri isolated from seafood and its environment. Int J Food Microbiol, 263, 32-37. doi:

    Shah, A. H., Saleha, A. A., Zunita, Z., Murugaiyah, M., Aliyu, A. B., & Jafri, N. (2013). Prevalence, distribution and antibiotic resistance of emergent Arcobacter spp. from clinically healthy cattle and goats. Transbound Emerg Dis, 60(1), 9-16. doi:

    Šilha, D., Pejchalová, M., & Šilhová, L. (2017). Susceptibility to 18 drugs and multidrug resistance of Arcobacter isolates from different sources within the Czech Republic. J Glob Antimicrob Resist, 9, 74-77. doi:

    Smith, K., Bender, J., & Osterholm, M. (2000). Antimicrobial resistance in animals and relevance to human in animals and relevance to human infections. Campylobacter, 2nd edn. Washington DC: ASM.

    Snelling, W. J., Matsuda, M., Moore, J. E., & Dooley, J. S. G. (2006). Under the Microscope: Arcobacter. Letters in applied microbiology, 42(1), 7-14. doi:

    Sousa, V. C. G. (2017). The role of phytochemicals in Arcobacter butzleri resistance. (Doctoral dissertation), Universidade da Beira Interior (Portugal), Retrieved from

    Talay, F., Molva, C., & Atabay, H. I. (2016). Isolation and identification of Arcobacter species from environmental and drinking water samples. Folia microbiologica, 61(6), 479-484. doi:

    ÜNVER, A., Atabay, H. I., ŞAHİN, M., & ÇELEBİ, Ö. (2013). Antimicrobial susceptibilities of various Arcobacter species. Turkish Journal of Medical Sciences, 43(4), 548-552. doi:

    Vandenberg, O., Houf, K., Douat, N., Vlaes, L., Retore, P., Butzler, J.-P., & Dediste, A. (2006). Antimicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium. Journal of antimicrobial chemotherapy, 57(5), 908-913. doi:

    Verma, M., Joshi, N., Rathore, R., & Mohan, H. (2015). Detection of Arcobacter spp in poultry, pigs, their meat and environment samples by conventional and PCR assays. The Indian Journal of Animal Sciences, 85(9), 954-957.

    Zacharow, I., Bystroń, J., Wałecka-Zacharska, E., Podkowik, M., & Bania, J. (2015). Prevalence and antimicrobial resistance of Arcobacter butzleri and Arcobacter cryaerophilus isolates from retail meat in Lower Silesia region, Poland. Pol J Vet Sci, 18(1), 63-69. doi:10.1515/pjvs-2015-0008

    Zhang, X., Alter, T., & Gölz, G. (2019). Characterization of Arcobacter spp. isolated from retail seafood in Germany. Food microbiology, 82, 254-258. doi:

Volume 11, Issue 1
June 2022
Pages 83-94
  • Receive Date: 08 February 2022
  • Revise Date: 18 April 2022
  • Accept Date: 20 April 2022