Studying the effect of modified cellulose nanofibers on the functional properties of poly (lactic acid) based biodegradable packaging

Document Type : Original Paper

Authors

1 PhD. Student, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Iran

2 Associate Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Iran

3 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Iran

4 Professor, Department of Polymer Chemistry, Faculty of Chemistry, University of Tabriz, Iran

5 Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Urmia, Iran

Abstract

The aim of this research was the use of Cellulose nanofibers (CNF) to improvement the properties of Poly (lactic acid) (PLA) biopolymer in order to increasing its applicability in food packaging. In order to improving the compatibility and miscibility with PLA matrix, CNF were treated by oleic acid. The resultant modified nanofibers (MCNF) were subsequently introduced into a PLA polymeric matrix and the effect of nanofiller on barrier, mechanical and optical properties of the polymer was studied. The morphology of fracture surface evaluated by scanning electron microscopy confirmed the uniform dispersion of MCNF at low levels. However, higher levels of MCNF (12%wt) causes to decreasing the uniform dispersibility and agglomeration of nanofibers. By adding MCNF, water vapor permeability decreased from 9.05×10-5g/m.h.Pa for pure PLA film to 6.96×10-5 g/m.h.Pa for PLA film containing 8% MCNF. Also the oxygen and light transmittance barrier properties improved by addition of MCNF. At the MCNF content of 12wt%, the tensile strength and Young’s modulus of the nanocomposites increased by 2.5 and 2 folds than those of pure PLA films respectively. However, addition of MCNF, caused to decrease in lightness and brightness and increase in yellowness of PLA films.

Keywords

الماسی، ه.، قنبرزاده، ب. و دهقان نیا، ج. 1392. مطالعه تأثیر اصلاح سطحی با اسید اولئیک بر روی خواص فیزیکی نانوفیبر سلولز. مجله علوم و تکنولوژی پلیمر، 26 (4): 100-91.
Abdul Khalil, H.P.S., Bhat, A.H. & Ireana Yusra, A.F. 2012. Green composites from sustainable cellulose nanofibrils: a review. Carbohydrate Polymers, 87: 963-979.
AOAC, 1990. Peroxide value of oils and fats. Method 965.33. In: Williams, S., (ed.), Official Methods of Analysis. Association of Official Analytical Chemists, Washington, DC.
ASTM. 1995. Standard test methods for water vapor transmission of material, E96-95. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Materials.
ASTM. 1996. Standard test methods for tensile properties of thin plastic sheeting, D882-91. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Materials.
Bondeson, D. & Oksman, K. 2007. Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites: Part A, 38: 2486-2492.
Cherian, B.M., Leao, A.L., de Souza, S.F., Costa, L.M.M., de Olyveira, G.M. & Kottaisamy, M. 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4): 1790–1798.
Cunha, A.G. & Gandini, A. 2010. Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose, 17: 875-889.
Dobreva, T., Benavente, R., Perena, J.M., Perez, E., Avella, M. & Garcia, M. 2010. Effect of different thermal treatments on the mechanical performance of poly (l-lactic acid) based eco-composites. Journal of Applied Polymer Science, 116: 1088-1098.
Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A. & Kenny, J.M. 2012. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90: 948-956.
Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Gandini, A., Martin, L. & Mondragon, I. 2008. Composites based on acylated cellulose fibers and low-density polyethylene: effect of the fiber content, degree of substitution and fatty acid chain length on final properties. Composites Science & Technology, 68: 3358-3364.
Frone, A.N., Berlioz, S., Chailan, J.F. & Panaitescu, D.M. 2013. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydrate Polymers, 91: 377-384.
Ghanbarzadeh, B. & Almasi, H. 2011. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48: 44–49.
Gousse, C., Chanzy, H., Cerrada, M.L., & Fleury, E. 2004. Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer, 45: 1569-1575.
Habibi, Y. & Dufresne, A. 2008. Highly Filled Bionanocomposites from Functionalized Polysaccharide Nanocrystals. Biomacromolecules, 9: 1974-1980.
Ibrahim, M.M., El-Zawawy, W.K. & Nassar, M.A. 2010. Synthesis and characterization of polyvinyl alcohol/nanospherical cellulose particle films. Carbohydrate Polymers, 79: 694-699.
Iwatake, A., Nogi, M. & Yano, H. 2008. Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology, 68: 2103-2106.
Jamshidian, M., Arab Tehrany, E., Imran, M., Jacquot, M. & Desobry, S. 2010. Poly-Lactic Acid: production, applications, nanocomposites, and release studies, Comprehensive Reviews in Food Science & Food Safety, 9: 552-571.
Kaushik, A., Singh, M. & Verma, G. 2010. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 82(2): 337-345.
Kowalczyk, M., Piorkowska, E., Kulpinski, P. & Pracella, M. 2011. Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Composites: Part A, 42: 1509-1514.
Kristo, E. & Biliaderis, C.G. 2007. Physical properties of starch nanocrystal reinforced films. Carbohydrate Polymers, 29(1): 254–259.
Lin, N., Chen, G., Huang, L., Dufresne, A. & Chang, P.R. 2009. Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of Poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. Journal of Applied Polymer Science, 113: 3417-3425.
Lin, N., Huang, J., Chang, P.R., Feng, J. & Yu, J. 2011. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid). Carbohydrate Polymers, 83: 1834-1842.
Ljungberg, N., Bonini, C., Bortolussi, F., Boisson, C., Heux, L. & Cavaill, L. 2005. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules, 6: 2732-2739.
Matsumura, H., Sugiyama, J. & Glasser, W.G. 2000. Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. Journal of Applied Polymer Science, 78: 2242-2253.
Ou, S., Wang, Y., Tang, S., Huang, C. & Jackson, M.G. 2005. Role of ferulic acid in preparing edible films from soy protein isolate. Journal of Food Engineering, 70: 205-210.
Paralikar, S.A., Simonsen, J. & Lombardi, J. 2008. Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science, 320: 248–258.
Pei, A., Zhou, Q. & Berglund, L.A. 2010. Functionalized cellulose nanocrystals as biobased nucleation agents in poly (L-lactide) (PLLA) – Crystallization and mechanical property effects. Composites Science and Technology, 70: 815–821.
Petersson, L. & Oksman, K. 2006. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Composites Science and Technology, 66: 2187–2196.
Petersson, L., Kvien, I. & Oksman, K. 2007. Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Composites Science & Technology, 67: 2535-2544.
Ramos, L.A., Morgado, D.L., El Seoud, O.A., da Silva, V.C. & Frollini, E. 2011. Acetylation of cellulose in LiCl-N,N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose, 18: 385–392.
Raquez, J.M., Murena, Y., Goffin, A.L., Habibi, Y., Ruelle, B., DeBuyl, F. & Dubois, P. 2012. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Composites Science and Technology, 72: 544–549.
Sanchez-Garcia, M.D. & Lagaron, J.M. 2010. Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118: 188–199.
Shimizu, Y.I. & Hayashi, J. 1989. Acylation of cellulose with carboxylic acids. Cellulose Chemistry and Technology, 23: 661-670.
Suprakas, S.R., Pralay, M., Masami, O., Kazunobu, Y. & Kazue, U. 2002. New polylactide/ layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules, 35: 3104-3110.
Tang, C. & Liu, H. 2008. Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Composites: Part A, 39: 1638–1643.
Vroman, I. & Tighzert, L. 2009. Biodegradable Polymers. Materials, 2: 307-344.
Yu, T., Ren, J., Li, S., Yuan, H. & Li, Y. 2010. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Composites: Part A, 41: 499-505.
CAPTCHA Image
Volume 2, Issue 3
December 2013
Pages 205-218
  • Receive Date: 04 May 2013
  • Revise Date: 13 September 2013
  • Accept Date: 21 September 2013