The Effect of Wall Material and Encapsulation Method on Physicochemical Properties Micro-encapsulated Fish Oil

Document Type : Original Paper

Authors

1 Professor, Department of Seafood Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 PhD Graduated, Department of Seafood Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

3 Assistant Professor, Department of Seafood Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

4 Associate Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

Abstract

In this study the physicochemical characteristics of microencapsulated fish oil using various wall materials and drying methods were examined. The fish oil encapsulated by three combinations of matrices (fish gelatin+maltodextrin, κ carrageenan+maltodextrin, fish gelatin+ κ carrageenan +maltodextrin), and 25% fish oil emulsions were dried through three different methods: coacervation (CC), spray drying (SD), and freeze drying (FD). Physicochemical characteristics including moisture content, surface and total oil, encapsulation efficiency, color and morphology of microcapsules were investigated. According to results, the combination of fish gelatin and maltodextrin was the best wall combination and also coacervation was the best method to encapsulation of fish oil. These powders had higher encapsulation efficiency and lower surface oil than the other treatments. The results indicated that microcapsules produced by coacervation actually formed larger microcapsules, which provided maximum protection to the fish oil droplets. Comparison of the CC, SD, and FD processes confirmed that combination of matrices; drying temperature, morphology and processing time were among the most critical factors influencing fish oil powders.

Keywords

Alamed, J., McClements, D.J., & Decker, E.A. (2006). Influence of heat processing & calcium ions on the ability of EDTA to inhibit lipid oxidation in oil-in-water emulsions containing omega-3 fatty acids. Food Chemistry, 95(4), 585-590. doi: https://doi.org/10.1016/j.foodchem.2005.01.041
Al-Hakim, K., & Stapley, A.G.F. (2004, August). Morphology of spray-dried & spray–freeze-dried whey powders. In Proceedings of the 14th International Drying symposium (IDS 2004), August. Sao Paulo, Brazil.
Anandharamakrishnan, C., Rielly, C.D., & Stapley, A.G.F. (2008). Loss of solubility of a-lactalbumin & b-lactoglobulin during the spray drying of whey proteins. LWT–Food Science & Technology, 41(2), 270-277. doi: https://doi.org/10.1016/j.lwt.2007.03.004
AROQ. (2003). The quest for health boosts Europe’s functional foods market to 2bn. Retrieved from https://www.just-food.com/analysis/the-quest-for-health-boosts-europes-functional-foods-market-to-2bn_id94105.aspx.
Bae, E.K., & Lee, S.J. (2008). Microencapsulation of avocado oil by spray drying using whey protein & maltodextrin. Journal of Microencapsulation, 25(8), 549-560. doi: https://doi.org/10.1080/02652040802075682
Baik, M., Suhendro, E., Nawar, W., Mcclements, J., Decker, E., & Chinachoti, D. (2004). Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. Journal of the American Oil Chemists’ Society, 81(4), 355-360. doi: https://doi.org/10.1007/s11746-004-0906-7
Bao, S.S., Hu, X.C., Zhang, K., Xu, X.K., Zhang, H.M., & Huang. H. (2011). Characterization Of Spray-Dried Microalgal Oil Encapsulated In Cross-Linked Sodium Caseinate Matrix Induced By Microbial Transglutaminase. Journal of Food Science, 76(1), 112-118. doi: https://doi.org/10.1111/j.1750-3841.2010.01953.x
Barrow, C., Nolan, C., & Jin, Y.L. (2007). Stabilization of highly unsaturated fatty cids & delivery into foods. Lipid Technology, 19(5), 108-111. doi: https://doi.org/10.1002/lite.200600037
Barrow, C., Noleen, C., & Holub, B.J. (2009). Bioequivalence of encapsulated & microencapsulated fish-oil supplementation. Journal of Functional Foods, 1(1), 38-43. doi: https://doi.org/10.1016/j.jff.2008.09.006
Cho, Y.H., Shim, H.K., & Park, J. (2003). Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross-linked proteins. Journal of Food Science, 68(9), 2717-2723. doi: https://doi.org/10.1111/j.1365-2621.2003.tb05794.x
Dahm, L. (1999). Fish oils provide fatty acids that are critical for health. Journal of Food Processing & Preservation, 36, 185-190.
Dickinson, E. (2003). Hydrocolloids at interfaces & the influence on the propertiesof dispersed systems. Food Hydrocolloids, 17(1), 25-39. doi: https://doi.org/10.1016/S0268-005X(01)00120-5
Dong, Z.J., Touré, A., Jia, C.S., Zhang, X.M., & Xu, S.Y. (2007). Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation. Journal of Microencapsulation, 24(7), 634-646. doi: https://doi.org/10.1080/02652040701500632
Dong, Z.J., Xia, S.Q., Hua, S., Hayat, K., Zhang, X.M., & Xu, S.Y. (2008). Optimization of cross-linking parameters during production of transglutaminase-hardened spherical multinuclear microcapsules by complex coacervation. Colloids Surf Biointerfaces, 63(1), 41-47. doi: https://doi.org/10.1016/j.colsurfb.2007.11.007
Drusch, S., & Berg, S. (2008). Extractable oil in microcapsules prepared by spray-drying: localisation, determination & impact on oxidation stability. Food Chemistry, 109(1), 17-24. doi: https://doi.org/10.1016/j.foodchem.2007.12.016
Drusch, S., Serfert, Y., Berger, A., Shaikh, M.Q., Ratzke, K., Zaporojtchenko, V., & Schwarz, K. (2012). New insights into the microencapsulation properties of sodium caseinate and hydrolyzed casein. Food Hydrocolloids, 27(2), 332-338. doi: https://doi.org/10.1016/j.foodhyd.2011.10.001
Drusch, S., Serfert, Y., Heuvel, A.V.D., & Schwarz, K. (2006). Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Research International, 39(7), 807-815. doi: https://doi.org/10.1016/j.foodres.2006.03.003
Eratte D., Wang B, Dowling, K., Barrow C.J., & Adhikari B.P. (2014). Complex coacervation with whey protein isolate & gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Function, 5(11), 2743- 2750. doi: https://doi.org/10.1039/c4fo00296b
Gan, C.Y., Cheng, L.H., & Easa, A.M. (2008). Evaluation of microbial transglutaminase & ribose crosslinked soy protein isolate-based microcapsules containing fish oil. Innovative Food Science & Emerging Technologies, 9(4), 563-569. doi: https://doi.org/10.1016/j.ifset.2008.04.004
Hall, G.M. (1996). Methods of testing protein functionality. (pp. 265). Blackie academiv & professional, London, UK.
Hambleton, A., Fabra, M.J., Debeaufort, F., Dury-Brun, C., & Voilley, A. (2009). Interface and aroma barrier properties of iota-carrageenan emulsion-based films used for encapsulation of active food compounds. Journal of Food Engineering, 93(1), 80-88. doi: https://doi.org/10.1016/j.jfoodeng.2009.01.001
Hardas, N., Danviriyakul, S., Foley, J.L., Nawar, W.W., & Chinachoti, P. (2000). Accelerated stability studies of microencapsulated anhydrous milk fat. LWT-Food Science and Technologhy, 33(7), 506-513. doi: https://doi.org/10.1006/fstl.2000.0696
Heinzelmann, K., & Franke, K. (1999). Using freezing and drying techniques of emulsions for the microencapsulation of fish oil to improve oxidation stability. Colloids & Surfaces B: Biointerfaces, 12(3-6), 223-229. doi: https://doi.org/10.1016/S0927-7765(98)00077-0
Heinzelmann, K., Franke, K., Valesco, J., & Marquez-Ruiz, G. (2000). Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques. Europian Food Research Technology, 211(2), 234-239. doi:https://doi.org/10.1002/(SICI)1438-9312(200002)102:23.0.CO;2-0
Heldman, D.R., & Hohner, G.A. (1974). An analysis of atmospheric freeze drying. Journal of Food Science, 39(1), 147-155. doi: https://doi.org/10.1111/j.1365-2621.1974.tb01010.x
Hogan, S.A., McNamee, B.F., O’Riordan, E.D., & O’Sullivan, M. (2001). Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. International Dairy Journal, 11(3), 137-144. doi: https://doi.org/10.1016/S0958-6946(01)00091-7
Hogan, S.A., O’Riordan, E.D., & O’Sullivan, M. (2003). Microencapsulation andoxidative stability of spray-dried fish oil emulsions. Journal of Microencapsulation, 20(5):675-688. doi: https://doi.org/10.3109/02652040309178355
Kagami, S., Sugimura, S., Fujishima, N., Matsuda, K., Kometani, T., & Matsumura, Y. (2003). Oxidative stability, structure, & physical characteristics of microcapsules formed by spraying drying of fish oil with protein & dextrin wall materials. Journal of Food Science, 68(7), 2248-2255. doi: https://doi.org/10.1111/j.1365-2621.2003.tb05755.x
Karthik, P., & Annharamakrishnan, C. (2013). Microencapsulation of docosahexaenoic acid by spray-freeze-drying method & comparison of its stability with spray-drying & freeze-drying methods. Food & Bioprocess Technology, 6(10), 2780-2790. doi: https://doi.org/10.1007/s11947-012-1024-1
Kitessaa, S.M., Gulatib, S.K., Ashesb, J.R., Fleckb, E., Scottc,T.W., & Nichols, P.D. (2001). Utilisation of fish oil in ruminants II. Transfer of fish oil fatty acids into goats' milk. Animal Feed Science & Technology, 89(3-40), 201-208. doi: https://doi.org/10.1016/S0377-8401(00)00232-7
Klaypradit, W., & Huang, Y. (2008). Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT-Food Science & Technology, 41(6), 1133-1139. doi: https://doi.org/10.1016/j.lwt.2007.06.014
Klinkesorn, U., Sophanodora, P., Chinachoti, P., Decker, E.A., & McClements, D.J. (2006). Characterization of spray-dried tuna oil emulsified in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition. Food Research International, 39(4), 449-457. doi: https://doi.org/10.1016/j.foodres.2005.09.008
Koc, M., Yilmazer, M.S., & Figen, K.E. (2010). Use of gelatin, pullulan, lactose & sucrose as coating material for microencapsulation of fish oil by freeze drying. Akademik Gida, 8(4), 13-16.
Kolanowski, W., Jaworska, D., Weissbrodt, J., & Kunz, B. (2007). Sensory assessment of microencapsulated fish oil powder. Journal of the American Oil Chemists' Society, 84(1), 37-45. doi: https://doi.org/10.1007/s11746-006-1000-x
Kolanowski, W., Ziolkowski, M., Weissbrodt, J., Kunz, B., & Laufenberg, G. (2006). Microencapsulation of fish oil by spray drying-impact on oxidative stability. Part 1. European Food Research and Technology, 222(3-4), 336-342. doi: https://doi.org/10.1007/s00217-005-0111-1
Lim, H.K., Tan, C.P., Bakar, J., & Ng, S.P. (2011). Effects of different wall materials on the physicochemical properties & oxidative stability of spray-dried microencapsulated red-Fleshed Pitaya (Hylocereus polyrhizus) seed oil. Food Bioprocess & Biotechnology, 5(4), 1220-1227. doi: https://doi.org/10.1007/s11947-011-0555-1
Lin, C.C., Lin, S.Y., & Hwang, L.S. (1995). Microencapsulation of squid oil with hydrophilic macromolecules for oxidative & thermal stabilization. Journal of Food Science, 60(1), 36-39. doi: https://doi.org/10.1111/j.1365-2621.1995.tb05601.x
Malecki, G.J., Shinde, P., Morgan, A.I., & Farkas, D.F. (1970). Atmospheric fluidized bed freeze drying. Food Technology, 24, 601-603.
Masters, K., (1991). Spray Drying H & book, (5th ed.). Longman Scientific & Technical, London.
McClements, D.J. (2005). Food Emulsions: Principles, Practice, & Techniques (2nd ed.). Boca Raton: CRC Press.
Peng, Z., Li, J., Guan, Y., & Zhao, G. (2013). Effect of carriers on physicochemical properties, antioxidant activities & biological components of spray-dried purple sweet potato flours. LWT-Food Science & Technology, 51(1), 348-355. doi: https://doi.org/10.1016/j.lwt.2012.09.022
Pourashouri, P. (2015). Effects of wild pistachio (pistacia atlantica), green tea (camellia sinensis) and rosemary (rosemarinus officinalis) extracts on oxidative stability of fish oil emulsion, (pp. 30). Research report. Gorgan University of Agricultural Sciences and Natural Resources. (in Persian)
Pourashouri, P., Shabanpour, B., Razavi, S.H., Jafari, S.M., Shabani, A., & Aubourg, S. (2014). Impact of wall materials on physicochemical properties of microencapsulated fish oil by spray drying. Food Bioprocess Technology, 51(8), 348-355. doi: https://doi.org/10.1007/s11947-013-1241-2
Rajam, R., Karthik, P., Parthasarathi, S., Joseph, G.S., & Anandharamakrishnan, C. (2012). Effect of whey protein-Alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. Journal of Functional Foods, 4(4), 891-898. doi: https://doi.org/10.1016/j.jff.2012.06.006
Shen, Z., Augustin, M.A., Sanguansri, L., & Cheng, L.J. (2010). Oxidative stability of microencapsulated fish oil powders stabilized by blends of chitosan, modified starch, & glucose. Journal of Agricultural of Food Chemistry, 58, 4487-4493. doi: https://doi.org/10.1021/jf904102k
Shi, L., Li, Z., Zhang, Z.L., Zhang, T.T., Yu, W., Zhou, M., & Tang, Z. (2013). Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT-Food Science & Technology, 54(1), 147-151. doi: https://doi.org/10.1016/j.lwt.2013.05.027
Swetank, Y., Hundre, P., & Anaharamakrishnan C. (2015). Effect of whey protein isolate and b-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method. Food Chemistry 174, 16-24. doi: https://doi.org/10.1016/j.foodchem.2014.11.016
Takeungwongtrakul, S., & Benjakul, S. (2017). Effect of glucose syrup and fish gelatin on physicochemical properties and oxidative stability of spray-dried micro-encapsulated shrimp oil. Journal of Food Processing and Preservation, 41(3), 1-12.  doi: https://doi.org/10.1111/jfpp.12876
Truelstrup-Hansen, L, Allan-Wojtas, P.M., Jin, Y.L., & Paulson, A.T. (2002). Survival of free & Ca-alginate microencapsulated Bifi dobacterium spp. in simulated gastrointestinal conditions. Food Microbiology, 19(1), 35-45. doi: https://doi.org/10.1006/fmic.2001.0452
Velasco, J., Dobarganes, C., & Marquez-Ruiz, G. (2000). Oxidation of free & encapsulated oil fractions in dried microencapsulated fish oils. Grasas Aceites, 51(6), 439-446. doi: https://doi.org/10.3989/gya.2000.v51.i6.463
Versic, R.J. (2003). Coacervation for flavor encapsulation. Journal of Microencapsulation, 14, 126-131. doi: https://doi.org/10.1021/bk-1988-0370.ch014
Walton, D.E. (2000). The morphology of spray-dried particles. A qualitative view. Drying Technology, 18(9), 1943-1986. doi: https://doi.org/10.1080/07373930008917822
Wang, B., Adhikari, B., & Barrow, C.J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation. Food Chemistry, 158(1), 358-365. doi: https://doi.org/10.1016/j.foodchem.2014.02.135
Zhong, Q., Tian, H., & Zivanivic, S. (2009). Encapsulation of fish oil in solid zein particles by liquid-liquid dispersion. Journal of Food Processing and Preservation,33(2), 255-270. doi: https://doi.org/10.1111/j.1745-4549.2009.00390.x
CAPTCHA Image
Volume 7, Issue 1
May 2018
Pages 13-28
  • Receive Date: 08 October 2016
  • Revise Date: 06 April 2017
  • Accept Date: 30 May 2017