Optimisation of physical and mechanical properties for biodegradable chitosan-nanocellulose nanocomposites

Document Type : Original Paper

Authors

1 MSc. Student, Department of Food Science and Technology, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran

2 Associate Professor, Department of Food Material and Process Design Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran

3 Professor, Department of Food Science and Technology, Faculty of Agriculture Engineering and Technology, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran

4 Assistant Professor, Department of Food Material and Process Design Engineering, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran

5 PhD. Student, Department of Food Science and Technology, Faculty of Agriculture Engineering and Technology, College of Agriculture and Natural Resource, University of Tehran, Karaj, Iran

Abstract

Extracted chitosan powder from crustacean crust has a high capacity for film forming; chitosan films are very resistant against breaking. On the other hand, cellulose nanoparticles have high biodegradability rates and are cheaper than other nanofillers. The aim of current research was to prepare and optimize chitosan-nanocellulose nanocomposites in order to utilize whole capabilities of these common materials. Chitosan powder with a high molecular weight, nanocellulose particles having diameters of 20-50 nm and glycerol were applied for optimisation purposes of nanocomposite properties. Addition of cellulose nanoparticles to chitosan films decreased moisture content, increased (till 30.1%) elongation-at-break and improved a* and b* values for final nanocomposites; decrease of glycerol concentration caused a decrease (till 28.7%) in water solubility and water vapour permeability rate and simoultanously increased (till 3.7 GPa) elastic module of nanocomposite. Nanocomposites containing 1 gr chitosan, 0.18% nanocellulose and 30% glycerol led to the highest desirability (75%). Scanning electron microscopy revealed that high concentrations of chitosan powder and cellulose nanoparticles could construct an intricate structure which justifies improvement of elongation capability after addition of nanoparticles to the chitosan films.

Keywords

داداشی، س.، موسوی، س.م. ع. و امام جمعه، ز. 1390. اثر افزودن ذرات نانو بر خواص مکانیکی و حرارتی فیلم‌های تولیدشده از پلی لاکتیک اسید. انتشارات دانشگاه تهران، صفحات 72-82.
قاسملو، م.، خاکسار، ر.، مردانی، ت.، شهنیا، م. و راشدی، ح. 1391. تهیه و بررسی بیوفیلم بسته‌بندی زیست‌تخریب‌پذیر ضدمیکروبی بر پایه نشاسته ذرت. مجله علوم تغذیه و صنایع غذایی ایران، 7(5): 115-123.
American Society for Testing and Materials. 2001. Standard test method for tensile properties of thin plastic sheeting. Philadelphia, Standard D882.
American Society for Testing and Materials. 1995. Standard test methods for water vapour transmission of material. Philadelphia, Standard E 95-96.
Azeredo, H.M.C., Mattoso, L.H.C., Wood, D., Williams, T.G., Bustillos, R.J.A. & McHugh, T.H. 2009. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science, 74 (5): 31–35.
Bangyekan, C., Aht-Ong, D. & Srikulkit, K. 2006. Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydrate Polymers, 63 (1): 61–71.
Butler, B.L., Vergano, P.J., Testin, R.F., Bunn, J.M. & Wiles, J.L. 1996. Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61: 953-955.
Diab, T., Biliaderis, C.G., Gerasopoulos, D. & Sfakiotakis, E. 2001. Physicochemical properties and application of pullunan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 81: 988–1000.
Fernandes, S.C.M., Freire, C.S.R., Silvestre, A.J.D., Pascoal, Neto, C., Gandini, A., Berglund, L.A. & Salmen, L. 2010. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 81 (2): 394-401.
Forssell, P., Lahtinen, R., Lahelin, M. & Myllarinen, P. 2002. Oxygen permeability of amylase and amylopectin films. Carbohydrate Polymers, 47:125–129.
Ghasemlou, M., Khodaiyan, F., Oromiehie, A. & Yarmand, M.S. 2011. Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49 (3): 378-384.
Hassan, M., Hassan, E. & Oksman, K. 2011. Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. Journal of Materials Science, 46(6):1732-1740.
Hosokawa, J., Nishiyama, M., Yoshihara, K. & Kubo, T. 1990. Biodegradable film derived from chitosan and homogenized cellulose. Industrial & Engineering Chemistry Research, 29: 800–805.  
Kanagaraj, S, Varanda, F.R., Zhiltsova, T.V., Oliveira, M.S. & Simoes, J.A.O. 2007. Mechanical properties of high density polyethylene/carbon nanotube composites. Composites Science and Technology, 67 (15–16): 3071–3077.
Klemm, D., Heublein, B. & Fink, H.P. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44: 3358-3393.
Ojagh, S.M., Rezaei, M., Razavi, S.H. & Hosseini, S.M.H. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122 (1): 161-166.
Olivas, G.I. & Barbosa-Cánovas, G.V. 2008. Alginate–calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT - Food Science and Technology, 41: 359–366.
Rhim, J.W., Hong, S.I. & Ha, C.S. 2009. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT- Food Science and Technology, 42: 612–617.
Rudrapatnam, N.T. & Farooqahrned, S.K. 2003. Chitin - the undisputed biomolecule of great potential. Critical Review in Food Science and Nutrition, 43: 61-87.
Srinivasa, P.C., Ravi, R. & Tharanathan, R.N. 2007. Effect of storage conditions on the tensile properties of eco-friendly chitosan films by response surface methodology. Journal of Food Engineering, 80 (1): 184-189.
Thakhiew, W., Devahastin, S. & Soponronnarit, S. 2010. Effects of drying methods and plasticizer concentration on some physical and mechanical properties of edible chitosan films. Journal of Food Engineering, 99 (2): 216-224.
CAPTCHA Image
Volume 2, Issue 3
December 2013
Pages 229-242
  • Receive Date: 19 May 2013
  • Revise Date: 03 November 2013
  • Accept Date: 10 November 2013