Vitamin A palimitate-loaded nanoemulsions produced by spontaneous emulsification method: effect of surfactant and oil on droplet size and stability

Document Type : Original Paper

Authors

1 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

2 Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

3 Associated Professor, Drug Applied Research Center,Tabriz University of Medical Sciences, Tabriz, Iran

4 Professor, Department of Crop Production and Plant Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

5 MSc. Graduated Student, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

Abstract

Spontaneous emulsification is one of the low energy methods in preparation of oil-in-water nanoemulsions. It relies on the formation of very fine oil droplets when an oil/hydrophilic surfactant mixture is added to water and is used as delivery system to encapsulate lipophilic nutricitical components such as fat soluble vitamins in functional food. In this study the influence of various types of surfactants (tween 20, 21, 40, 80, 85 and 1:1 ratio of tween 20:85), carrier oils (coconut, soyabean & corn oil, octyl octanoate, migliol 812) and different concentration of surfactant and oils in the system (SER & SOR) on the droplet size and stability of vitamin A palmitate-loaded nanoemulsions prepared by spontaneous emulsification was investigated . Tween 80 (surfactant) nanoemulsion containing migliol 812 (carrier oil containing 3% vitamin A palmitate) with surfactant-to-emulsion ratio (SER= %15) and surfactant to oil ratio (SOR=150%), was determined as optimum sample with monomodal droplet size of 76 nm which was stable at 25 ˚C for 3 months.

Keywords

قنبرزاده، ب.، 1392. شیمی و فیزیک سیستم‌های کلوئیدی و محلول‌های بیوپلیمری غذایی. مؤسسه انتشارات علمی دانشگاه صنعتی شریف. صفحات 20-40.
مساح، م. 1392. بررسی ویژگی‌های کلوئیدی نانوامولسیون‌های حاوی آلفاتوکوفرول تولید شده با استفاده از روش کم‌انرژی بر پایه سورفاکتانت. پایان‌نامه کارشناسی ارشد، دانشکده کشاورزی، دانشگاه تبریز.
نیک نیا، ن.، قنبرزاده، ب.، همیشه‌کار، ح.، رضایی مکرم، ر. 1392. تهیه و ارزیابی نانوامولسیون‌های خوراکی ویتامین E. با روش خودبه‌خودی. مجله علوم تغذیه و صنایع غذایی ایران. 8 (4): 65-51.
Anton, N., & Vandamme, T. 2009. The universality of low-energy nano-emulsification. International Journal Pharmaceutical, 377: 142-147.
Benoit, J.P., Couvreur, P., Devissague,t J.P., Fessi, H., Puisieux, F., & Roblot- Treupel L. (1986). Les formes vectoris!ees ou "a distribution modul!ee, nouveaux syst"emes d’administration des m!edicaments. Journal Pharmaceutical Belgian, 41: 319–29.
Bouchemal, K., Brianc, S., & Fessi, H. 2004. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. International Journal of Pharmaceutics, 280 (1–2): 241–251.
Carlotti, M. E., Sapino, S., Trotta, M., Battaglia, L., Vione, D., & Pelizzetti, E. 2005. Photostability and stability over time of retinyl palmitate in an O/W emulsion and in SLN introduced in the emulsion. Journal of Dispersion Science and Technology, 26 (2): 125-138.
De Vost, P., Faas, M.M., Spasojevic, M. & Sikkema, J. 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal. 20 (4): 292–302.
Fathi, M., Mozafari, M.R., & Mohebbi, M. 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23: 13-27.
Hamishehkar H., Emami J., Rouholamini Najafabadi A., Gilani K., Minaiyan M., Mahdavi H., & Nokhodchi A. 2009. The effect of formulation variables on the characteristics of insulin-loaded poly (lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Colloid Surface B, 74: 340–349.
Horn, D., & Rieger, J. 2001. Organic nanoparticles in the aqueous phase–theory, experiment, and use. Angewandte Chemie International Edition, 40: 4330-4361.
Hu, F. Q., Jiang, S. P., Du, Y. Z., Yuan, H., Ye, Y. Q., & Zeng, S. 2005. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids and Surfaces B: Biointerfaces, 45 (3-4): 167-173.
Jafari, S.M., Assadpoor, E., & Bhandari, B. 2008. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22 (7): 1191–1202.
Komaiko, J., & McClements, D.J. 2014. Optimization of isothermal low-energy nanoemulsion formation: Hydrocarbon oil, non-ionic surfactant, and water systems. Journal of Colloid and Interface Science, 425: 59–66.
Lee, S., & D.J., McClements. 2010. Fabrication of protein- stabilized nanoemulsios using a combind homogenization and amphiphilic solvent dissolution/evaporation approach. Food Hydrocolloids, 24: 560-569.
Li, Y., Zheng, J., & McClements, D.J. 2012. Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on poly methoxy flavone crystallization. Food Hydrocolloids, 27: 517-528.
Ostertag, T., Weiss, J., & McClements, D.J. 2012. Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid and Interface Science, 388 (1): 95-102.
Pardo, G.D., & McClements, D.J. 2014. Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends in Food Science & Technology, 38 (2): 88-103.
Piorkowski, D.T., & McClements, D.J. 2014. Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocolloids, 42 (1): 5-41.
Pouton, C. W. 1997. Formulation of self-emulsifying drug delivery systems. Advanced Drug Delivery Reviews, 25: 47-5.
Rao, R., & McClements, D.J. 2012. Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food Hydrocolloids, 29: 326-334.
Saberi, A.M., Fang, Y., & McClements, D.J. 2013. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. Journal of Colloid and Interface Science, 391: 95–102.
Sagalowicz, L., & Leser, M. 2010. Delivery systems for liquid food products. Current Opinion in Colloid & Interface Science, 15 (1-2): 61-72.
Silva, H.D., Cerqueira, M.A., & Vicente. 2011. Nanoemulsions for food applications: development and characterization. Food Bioprocess Technology, 5: 854- 867.
Sood, S., & Gowthamarajan, K.J.K. 2014. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids and Surfaces B: Biointerfaces, 113: 330– 337.
Wakerly, M.W., Pouton, C.W., Meakin, B.J., & Morton, F.S. 1986. Self-emulsification of vegetable oil-non-ionic surfactant mixtures. Scamehron, J.F. Phenomena in mixed surfacyan systems. ACS Publications. pp. 242-255.
Wulff-Perez, A., Torcello-Gomez, M.J., & Rodrıguez, M. 2009. Stability of emulsions for parenteral feeding: Preparation and characterization of o/w nanoemulsions with natural oils and Pluronic f68 as surfactant. Food Hydrocolloids, 23: 1096–1102.
Yang, Y., & McClements, D.J. 2013. Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocolloids, 30: 712-720.
Yang, Y., Marshal-Breton, C.H., Leser, M.E., Sher, A.A., & McClements, D.J., 2012. Fabrication of ultrafine edible emulsions: comparison of high-energy and low-energy homogenization methods. Food Hydrocolloids, 29: 398- 406.
CAPTCHA Image
Volume 4, Issue 4
January 2016
Pages 299-314
  • Receive Date: 10 June 2004
  • Revise Date: 31 October 2015
  • Accept Date: 08 November 2015