Beta-Carotene loaded nanoliposome: effects of gama –oryzanol on particle size stability and encapsulation

Document Type : Original Paper

Authors

1 MSc. Graduated Student, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

2 Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

3 Associated Professor, Department of Pharmaceutical Sciences, Drug Applied Research Center, Tabriz University of Medical Sciences, Iran

4 Associated Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

Abstract

Beta-carotene is one of the most important types of functional compounds, antioxidant and precursor of vitamin A which can be find in plant based products. The enrichment of food with beta carotene is difficult due to its hydrophobic nature and low stability. The encapsulation of β-carotene in a lipid carrier such as liposome is a method which potentially can reduce these problems. In this research, the ß-carotene bearing liposomal system   prepared using modified thermal method and Gama-oryzanol, as a phytosterols, was used to increase the stability of the liposome structure. Intending to ensure the capsulation of beta carotene in liposomes, functional groups and possible interaction between beta-carotene and lecithin was examined by infrared spectroscopy (FTIR) and peaks of 980 and 1580 cm-1 corresponding to the functional β-carotene, were observed in liposomes. Not only the particle size was obtained around 64 nm at different ratio of lecithin to β-carotene, but also it was below 500 nm during 30 days of storage time.  Encapsulation efficiency of β-carotene at high concentrations of lecithin was % 77.25 and it declined to the %69.73 during storage. Using Gama-oryzanol in β-carotene bearing liposome increased the stability of particle size and encapsulation during the storage period.

Keywords

قنبرزاده، ب.، الماسی، ه. و نیک‌نیا، ن. 1392، شیمی و فیزیک سیستم‌های کلوئیدی و محلول‌های بیوپلیمری غذایی، فصل اول، انتشارات دانشگاه صنعتی شریف.
محمد حسنی، ز.، قنبرزاده، ب.، همیشه‌کار، ح. و رضایی مکرم، رضا. 1392. تعیین ویژگی‌های نانولیپوزوم‌های حامل گامااوریزانول: توسط طیف‌سنجی فروسرخ، اندازه وزیکول، پتانسیل زتا، پایداری فیزیکی و رئولوژی پایا نشریه پژوهش‌های علوم و صنایع غذایی ایران، 10 (1): 1- 17.
محمدی، م.، قنبرزاده، ب.، همیشه‌کار، ح. و رضایی مکرم، ر. 1392. ویژگی‌های فیزیکی نانو‌لیپوزوم‌های حامل ویتامین D تولید شده به روش هیدراسیون ارزیابی لایه نازک-سونیکاسیون. مجله علوم تغذیه و صنایع غذایی ایران، 8 (4): 175-188.
Alexander, M., Acero Lopez, A., Fang, Y., & Corredig, M. 2012. Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability. Food Science and Technology, 47: 427-436.
Aanrjan, N., Miehosseini, H., Bahrani, B.S., & Tan, C.P. 2011. Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. Food Science and Technology, 44: 1658-1665.
Bang, H.S., Hwang, I.C., Yu, Y.M., Kwon, H.R., Kim, D.H., & Park, H.J. 2011. Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. Journal of Microencapsulation, 28 (7): 595–604.
Bouaraba, L., Maherania, B., Kheirolomoom, A., Hasana, M., Aliakbarianc, B., Lindera, M., & Arab-Tehranya, E. 2014. Influence of lecithin–lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule. Colloids and Surfaces B: Biointerfaces, 115: 197–204.
Brandl,  M. 2001. Lipsomes as drug carriers , A technological approach. Biotechnology Annual Review, 7: 59-85.
Chan, Y.H., Chen, B.H., Chiu, C.P., & Lu, Y.F. 2004. The influence of phytosterols on the encapsulation efficiency of cholesterol liposomes. International Journal of Food Science and Technology, 39: 985–995.
Fathi, B., Mozafari, M., & Mohebbi, M. 2011. Nanoencapsulation of food ingredients using lipid based delivery systems. Trend in Food Science and Technology, 23: 1-15.
Gibis, M., Rahn, N., & Weiss, J. 2013. Physical and oxidative stability of uncoated and chitosan-coated liposomes containing grape seed extract. Pharmaceutics, 5: 421-433.
Grassi, G., Crevatin, A., Farra, R., Guarnieri, G., Pascotto, A., Rehimers, B., Lapasin, R., & Grassi M. 2006. Rheological properties of aqueous Pluronic–alginate systems containing liposomes. Journal of Colloid and Interface Science, 301: 282–290.
Heurtault, B., Saulnier, P., Pech, B., Proust, J.E., & Benoit, J.P. 2003. Physicochemical stability of colloidal lipid particles. Biomaterials, 24: 4283-4300.
Hua, W., & Liu, T.  2007. Preparation  and properties of highly stable innocuous niosome in Span 80/PEG 400/H2O system. Colloids and Surfaces A: Physicochem, 302: 377–382.
Hwang, S.Y., Kim, H.K., Choo, J., Seong, G.H., Hien, T.B.D., & Lee, E.K. 2012. Effects of operating parameters on the efficiency of liposomal encapsulation of enzymes. Colloids and Surfaces B: Biointerfaces, 94: 296– 303.
Hwang, I.S., Tasi, Y., & Chiang, K. 2010. The feasibility of antihypertensive oligopeptides encapsulated in liposomes prepared with phytosterols β-sitosterol or sigmasterol. Food Research International, 43: 133-19.
Keller, B.C. 2001. Liposomes in nutrition. Trends in Food Science and Technology, 12: 25–31.
Kuligowski, J., Quintas, G., Garrigues, S., & Guardia, M. 2008. Determination of lecithin and soybean oil in dietary supplements using partial least squares-Fourier Trans form infrared spectroscopy. Talanta, 77: 229-234.
Liu, N., & Park, H.J. 2010. Factors effect on the loading efficiency of vitamin C loaded chitosan-coated nanoliposomes. Colloids and Surfaces B: Biointerfaces, 76: 16–19.
Lu, Q., Li, D.C., & Jiang, J.G. 2011. Preparation of a tea polyphenol nanoliposome system and its physicochemical properties. Journal of Agriculture and Food Chemistry, 59: 13004–13011.
Malheiros, P.S., Dariot, D.J., & Brandelli, A. 2010. Food applications of liposome- encapsulated antimicrobial peptides. Trends in Food Science and Technology, 21: 284-292.
Marsanasco, M., M´arquez, A.L., Wagner, J.R., Alonso, S.V., & Chiaramoni, N.S. 2011. Liposomes as vehicles for vitamins E and C: an alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International, 44: 3039-3046.
McClements, D. J. 2005. Food emulsions: Principles, practices, and techniques, Colloidal interactions, CRC. pp: 53-93.
Mohammadi, M, Ghanbarzadeh, B., Hamishehkar, H., Rezayi Mokarram, R., & Mohammadifar, M. 2014. Physical properties of vitamin D3-loaded nanoliposomes prepared by thin layer hydration-sonication. Iranian Jouranal of Nutrition Science and Food Technology, 8 (4): 175-188.
Mozafari, M.R. 2005. Liposomes: an overview of manufacturing techniques. Cellular and Molecular Biology Letters, 10: 711–719.
Mozafari, M.R., Khosravi-Darani, K., Borazan, G.G., Cui, J., Pardakhty, A., & Yurdugul, S. 2008. Encapsulation of food ingredients using nanoliposome technology. International Journal of Food Properties, 11: 833-844.
Mozafari, M.R., Johnson, Ch., Hotziantoniou, S., & Demetzos, C. 2008. Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research, 18: 309–327.
Nacke, C., & Schrader, J. 2011. Liposome based solubilisation of carotenoid substrates for enzymatic conversion in aqueous media. Journal of Molecular Catalysis B: Enzymatic, 71: 133–138.
Rasti, B., Jinap, E., Mozafari, M.R., & Yazid, A.M. 2012. Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. Food Chemistry, 135: 2761–2770.
 
Rauscher, R., Edenharder, R., & Platt, K.L. 1998. In vitro antimutagenic and in vivo anticlastogenic effects of carotenoids and solvent extracts from fruits and vegetables rich in carotenoids. Mutation Research, 413: 129–142.
Rudra, A., Deepa, R.M., Ghosh, M.K., Ghosh, S., & Mukherjee, B. 2010. Doxorubicin-loaded phosphatidylethanolamineconjugated nanoliposomes: in vitro characterization and their accumulation in liver, kidneys, and lungs in rats. International Journal of Nanomedicine, 5: 811-823.
Sagalowics, L., & Leser, M. 2010. Delivery systems for liquid food products. Current Opinion in Colloid and Interface Science, 15: 61–72.
Suh, M., Yoo, S.H., & Lee, H.G. 2007. Antioxidative activity and structural stability of microencapsulated gamma-Oryzanol in heat-treated lards. Food Chemistry, 6: 1065-1070.
Schuler, I., Duportail, G., Glasser, N., Benveniste, P., & Hartmann, M. A. 1990. Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study. Biochimica et Biophysica Acta (BBA) Biomembranes, 1028 (1): 82- 88.
Seetapan, N., Bejrapha, P., Srinuanchai, W., Puttipipatkhachorn, S., & Ruktanonchai, U. 2010. Nondestructive rheological measurement of aqueous dispersions of solid lipid nanoparticles: effects of lipid types and concentrations on dispersion consistency. Drug Development and Industrial Pharmacy, 36(9): 1–11.
Tan, H. W., & Misran, M. 2012. Characterization of fatty acid liposome coated with low-molecular-weight chitosan. Journal of Liposome Research, 22 (4): 329–335.
Taylor, T.M., Davidson, P.M., Bruce, B., & Weiss, J. 2005. Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45: 587–605.
Taylor, T.M., Gaysinksy, S., Davidson, P.M., Bruce, B.D., & Weiss, J. 2007. Characterization of antimicrobial bearing liposomes by zeta-potential, vesicle size and encapsulation efficiency. Food Biophysics, 2: 1−9.
Viriyaroj, A., Ngawhirunpat, T., Sukma, M., Akkaramongkolporn, P., Ruktanonchai, U., & Opanasopit P. 2009. Physicochemical properties and antioxidant activity of gamma-oryzanol-loaded liposome formulations for topical use. Pharmaceutical Development and Technology, 6: 665–671.
Xia, S., Xu, S., & Zhang, X. 2006. Optimization in the preparation of coenzyme Q10 nanoliposomes. Journal of Agriculture and Food Chemistry, 17: 6358–6366.
Yin, L.J., Chu, B.S., Kobayashi I., & Nakajima, M. 2009. Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocolloids, 23: 1617-1622.
Yurdugul, S., & Mozafari, M.R. 2004. Recent advances in micro- and nanoencapsulation of food ingredients. Cellular and Molecular Biology Letters, 9: 64–65.
Zalb, S., Navarro, I., Troconiz, I F., Ilarduya, C. T. & Garrido, M. 2012. Application of different methods to formulate PEG-liposomes of oxaliplatin: evaluation in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 81: 273–280.
CAPTCHA Image
Volume 4, Issue 4
January 2016
Pages 365-382
  • Receive Date: 05 January 2015
  • Revise Date: 24 September 2015
  • Accept Date: 02 October 2015