An Experimental Study on the Effect of Thermal Shield on Energy Saving in Cooking Pot

Document Type : Original Paper

Authors

1 Assistant Professor, Department of Food Industry Machineries, Research Institute of Food Science and Technology, Mashhad, Iran

2 Assistant Professor, School of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

The present study aims at reducing the energy consumption in the cooking process by using a simple technical method, a thermal shield around the cooking pot. The research has conducted experimentally and the effect of the thermal shield on the thermal efficiency was investigated regarding the geometric parameters of the pot (diameter and height) and the amount of fluid in the pre and post-boiling stages. The results showed that the thermal shield has a positive effect on pre-boiling stage leading to an average amount of 20% energy savings independent of geometry and the amount of fluid. It was also shown that the effect of thermal shield in the boiling stage is a function of liquid height inside the container. Also, for a constant value of thermal energy, the effect of thermal shield increases with the container height without limitation. It was also shown that the effect of the thermal shield in boiling stage is a function of the height of liquid inside the container. Finally, an economic investigation for Iranian households showed that utilization of a thermal shield in cooking process will save energy consumption equivalent to 12.5 million barrels oil per year.

Keywords

Arora, P., Jain, S., & Sachdeva, K. (2014). Laboratory based assessment of cookstove performance using energy and emission parameters for North Indian cooking cycle. Biomass and Bioenergy, 69, 211-221. doi: https://doi.org/10.1016/j.biombioe.2014.07.012
Cadavid, F.J., Cadavid, Y., Amell, A.A., Arrieta, A.E., & Echavarría, J.D. (2014). Numerical and experimental methodology to measure the thermal efficiency of pots on electrical stoves. Energy,73, 258-263.doi: https://doi.org/10.1016/j.energy.2014.06.017
Daioglou, V., Van Ruijven, B.J., & Van Vuuren, D.P. (2012). Model projections for household energy use in developing countries. Energy, 37(1), 601-615.doi: https://doi.org/10.1016/j.energy.2011.10.044
Funk, P.A. (2000). Evaluating the international standard procedure for testing solar cookers and reporting performance. Solar Energy, 68(1), 1-7. doi: https://doi.org/10.1016/S0038-092X(99)00059-6
Hannani, S.K., Hessari, E., Fardadi, M., & Jeddi, M.K. (2006). Mathematical modeling of cooking pots’ thermal efficiency using a combined experimental and neural network method. Energy, 31(14), 2969-2985. doi: https://doi.org/10.1016/j.energy.2005.11.006
Karunanithy, C., & Shafer, K. (2016). Heat transfer characteristics and cooking efficiency of different sauce pans on various cooktops. Applied Thermal Engineering, 93, :1202-1215.doi: https://doi.org/10.1016/j.applthermaleng.2015.10.061
Kanjanapongkul, K. 2017. Rice cooking using ohmic heating: determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192, 1-10. doi: https://doi.org/10.1016/j.jfoodeng.2016.07.014
Kshirsagar, M.P., & Kalamkar, V.R. (2015). A mathematical tool for predicting thermal performance of natural draft biomass cookstoves and identification of a new operational parameter. Energy,93(1), 188-201.doi: https://doi.org/10.1016/j.energy.2015.09.015
Kshirsagar, M.P., & Kalamkar, V.R. (2014). A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design. Renewable and Sustainable Energy Reviews, 30, 580-603. doi: https://doi.org/10.1016/j.rser.2013.10.039
MacCarty, N., Still, D., & Ogle, D. (2010). Fuel use and emissions performance of fifty cooking stoves in the laboratory and related benchmarks of performance. Energy for Sustainable Development, 14(3), 161-171. doi: https://doi.org/10.1016/j.esd.2010.06.002
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 37-46. doi: https://doi.org/10.1016/S0960-8524(01)00118-3
Moshiri, S., Atabi, F., Panjeshahi, M.H., & Lechtenböhmer, S. (2011). Long run energy demand in Iran: efficiency and renewable energy scenarios, USAEE-IAEE. WP 11-071.
Nahar, N.M., & Gupta, J.P. (1991). Energy-conservation potential for solar cookers in arid zones of India. Energy, 16(6), 965-969. doi: https://doi.org/10.1016/0360-5442(91)90048-Q
Panwar, N.L., Kaushik, S.C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3), 1513-1524. doi: https://doi.org/10.1016/j.rser.2010.11.037
Taylor, J. R. (1997). An introduction to error analysis: The study of uncertainties in physical measurements, Univ. Science, Sausalito, CA45, 92.
Thacker, K.S., Barger, K.M., & Mattson, C.A. (2017). Balancing technical and user objectives in the redesign of a peruvian cookstove. Development Engineering, 2, 12-19. doi: https://doi.org/10.1016/j.deveng.2016.05.001
World Bank, (2014). Global tracking framework report. Sustainable energy for All 2013-2014. (Chapter 3). (pp. 103-162): Washington, DC: World Bank
World Health Organization (WHO). (2016). Visited in April 2016. Available online at: http://www.who.int/indoorair/en.
CAPTCHA Image
Volume 7, Issue 4
February 2019
Pages 353-364
  • Receive Date: 07 January 2018
  • Revise Date: 23 June 2018
  • Accept Date: 28 June 2018