Evaluation of the Oxidative Stability of Frying Oil, Mixed with Purslane and Corn Seed Oil

Document Type : Original Paper

Authors

1 Department of Science and Engineering of Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Young Researchers and Elite Club, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

Abstract

One of the procedures for the stabilizing of frying oil, in order to preserve the synthetic antioxidants, is adding oils containing antioxidant and high oxidative stability compounds. The objective of this research was the quality evaluation of three frying oils mixture (Sunflower, Ladan and Iran) due to the addition of purslane and corn seed oils and frying over 12 h at 170±2 °C for this reason, the mixed frying oil, containing corn and purslane seed oil in the proportion of (70:15:15 w/w) called mixture 1, mixed frying oil containing corn and purslane seed oil in the proportion of (75:15:10 w/w) called mixture 2, corn seed oil, purslane seed oil and mixture of three frying oils in terms of qualitative indexes (peroxide, p-anisidine, totox, total polar compounds, oxidative stability and conjugate-DNs), were evaluated. At first the antioxidant activity rate of purslane seed oil was assessed and the value of 52.9±0.19 percent was measured. The comparison of two types of frying oil mixtures indicated that the values of peroxide, p-anisidine, totox and conjugate-DNs, indicators of mixture 1 and 2 were (25.83 meq/kg, 80.63, 132.29 and 15.01 μmol/g) and (28.13 meq/kg, 85.73, 141.99 and 17.17 μmol/g) respectively which had significant difference with frying and other oils (P<0.05). The higher ratio of purslane oil in the frying oil, mixture 1, increased its oxidative stability in contrast to oil mixture 2 and purslane preserved it against early degradation at high temperature.

Keywords

Abdulkarim, S.M., Long, K., Lai, O.M., Muhammad, S.K.S., & Ghazali, H.M. (2007). Frying quality and stability of high-oleic moringa oleifera seed oil in comparison with other vegetable oils. Food Chemistry, 105(4), 1382-1389. doi: https://doi.org/10.1016/j.foodchem.2007.05.013
Ahn, J.H., Kim, Y.P., & Kim, H.S. (2012). Effect of natural antioxidants on the lipid oxidation of microencapsulated seed oil. Food Control, 23(2), 528-534. doi: https://doi.org/10.1016/j.foodcont.2011.08.026
Alam, M., Juraimi, A.S., Rafii, M.Y., Abdul Hamid, A., Aslani, F., Hasan, M.M., Zainudin, M., Asraf, M., & Uddin, M. (2014). Evaluation of antioxidant compounds, antioxidant activities, and mineral composition of 13 collected purslane (portulaca oleracea L.) accessions. BioMed Research International, 2014. doi: http://dx.doi.org/10.1155/2014/296063
Alimentarius Codex. (1989). Standard for olive oils and olive pomace oils CODEX STAN 33–1981, Adoptedin 1981. Revision, 2003, 2015.
Al-Kahtani, H.A. (1991). Survey of quality of used frying oils from restaurants. Journal of the American Oil Chemists Society, 68(11):857-862. doi: https://doi.org/10.1007/BF02660602
Andrade, E.H., Carreira, L.M., Sousa, P.J., & Maia, J.G. (2009). Essential oil composition and antioxidant capacity of Lippia schomburgkiana. Natural Product Communications, 4(9), 1281-1286. doi: https://doi.org/10.1177/1934578X0900400925
AOAC. (2005). Official methods of analysis. (18th Edition). Association of official analytical chemists, Washington DC, Method 935.14 and 992.24.
AOCS. (1989). Fatty acid in oils and fats preparation of methyl ester boron trifluoride method. (15th Edition), AOAC Official Method 969.33
Arkanit, K., Tanawuttipong, W., & Nuntavith, S. (2006). Faculty of engineering and agro industry. Maejo University Nongham, Thailand.
Blumenthal, M.M. (1991). A new look at the chemistry and physics of deep-fat fryingFood Technology, 45(2), 68-71.
Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. doi: https://doi.org/10.1016/S0023-6438(95)80008-5
Casal, S., Malheiro, R., Sendas, A., Oliveira, B.P.P., & Pereira, J.A. (2010). Olive oil stability under deep-frying conditions. Food and Chemical Toxicology, 48(10), 2972-2979. doi: https://doi.org/10.1016/j.fct.2010.07.036
Chatzilazarou, A., Gortzi, O., Lalas, S., Zoidis, E., & Tsaknis, J. (2006). Physicochemical changes of olive oil and selected vegetable oils during frying. Journal of Food Lipids, 13(1), 27-35. doi: https://doi.org/10.1111/j.1745-4522.2006.00032.x
Choe, E., & Min, D.B. (2006). Chemistry and reactions of reactive oxygen species in foods. Journal of Food Science, 70(9), 142-159. doi: https://doi.org/10.1111/j.1365-2621.2005.tb08329.x
Coquillat, M. (1951). Sur les plantes les plus communes a la surface du globe. Publications de la Societe Linneenne de Lyon, 20(7), 165-170.
de Lorgeril, M., Salen, P., Laporte, F., & de Leiris, J. (2001). Alpha-linolenic acid in the prevention and treatment of coronary heart disease. European Heart Journal Supplements, 3(1), D26-D32. doi: https://doi.org/10.1016/S1520-765X(01)90115-4
Delfan-Hosseini, S., Nayebzadeh, K., Mirmoghtadaie, L., Kavosi, M., & Hosseini, S.M. (2017). Effect of extraction process on composition, oxidative stability and rheological properties of purslane seed oil. Food Chemistry, 222, 61-66. doi: https://doi.org/10.1016/j.foodchem.2016.11.150
Dunbar, B.S., Bosire, R.V., & Deckelbaum, R.J. (2014). Omega 3 and omega 6 fatty acids in human and animal health: an African perspective. Molecular and cellular Endocrinology, 398(1-2), 69-77. doi: https://doi.org/10.1016/j.mce.2014.10.009
Dweck, A.C. (2001). Purslane (portulaca oleracea): the global panacea. Personal care magazine, 2(4), 7-15.
Ebrahimzadeh, M.A., Nabavi, S.F., & Nabavi, S.M. (2009). Essential oil Composition and Antioxidant Activity of pterocaryafivaxinifoliaPakistan Journal of Biological Sciences, 12(13), 957-963.
Fangfang, A., Jun, B., Dan, Z.H.O.N.G., Yang, Y.A.N.G., & Yizeng, L.I.A.N.G. (2013). Comparison and analysis of fatty acids between oil-tea camellia seed oil and other vegetable oils. China Oils Fats, 38, 77-80.
Farmer, E.H. (1946). Peroxidation in relation to olefinic structure. Transactions of the Faraday Society, 42, 228-236.
Firestone, D. (1993). Food Technology-David Firestone reviews worldwide regulation of frying fats and oils in the first paper in this section. The second section consists of three papers by TL Mounts, A. Paradis and. Inform-International News on Fats Oils and Related Materials, 4(12), 1366-1386.
Foglia, T.A., Petruso, K., & Feairheller, S.H. (1993). Enzymatic interesterification of tallow-sunflower oil mixtures. Journal of the American Oil Chemists’ Society, 70(3), 281-285. doi: https://doi.org/10.1007/BF02545309
Ghazali, H.M., Tan, A., Abdulkarim, S.M., & Dzulkifly, M.H. (2009). Oxidative stability of virgin coconut oil compared with RBD palm olein in deep-fat frying of fish crackers. Journal of Food Agriculture& Environment, 7(3&4), 23-27.
Houhoula, D.P., Oreopoulou, V.; & Tzia, C. (2003). The effect of process time and temperature on the accumulation of polar compounds in cottonseed oil during deep‐fat frying. Journal of the Science of Food and Agriculture, 83(4), 314-319. doi: https://doi.org/10.1002/jsfa.1314
Keyvani, M., & Bolandi, M. (2015). Physicochemical and organoleptic properties of Lighvan cheese fortified with protulaca oleracea seed oil. Journal of Chemical Health Risks, 5(1), 21-27. doi: https://doi.org/10.22034/JCHR.2018.544089
Kress-Rogers, E., Gillatt, P.N., & Rossell, J.B. (1990). Development and evaluation of a novel sensor for the in situ assessment of frying oil quality. Food Control, 1(3), 163-178. doi: https://doi.org/10.1016/0956-7135(90)90008-Z
Malek, F. (2010). The oil seeds and vegetable oils (characteristics and processing). (pp. 586): Published by education and promotion of agriculture. (in Persian)
Mazza, M., Pomponi, M., Janiri, L., Bria, P., & Mazza, S. (2007). Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31(1), 12-26. doi: https://doi.org/10.1016/j.pnpbp.2006.07.010
Naghshineh, M., Ariffin, A.A., Ghazali, H.M., Mirhosseini, H., Kuntom, A., & Mohammad, A.S. (2009). Monitoring the change patterns of physicochemical properties of oil blend as function of storage time. Journal of Food, Agriculture & Environment, 7(3&4), 120-125.
Patterson, H.B.W. (1989). Handling and storage of oilseeds, oils, fats, and meal. (No. 633.85 P38 1989.). (pp. 394): London: Elsevier Applied Science.
Ren, G., Zhang, W., Sun, S., Duan, X., & Zhang, Z. (2015). Enhanced extraction of oil from flaxseed (linum usitatissimum L.) using microwave pre-treatment. Journal of Oleo Science, 64(10), 1043-1047. doi: https://doi.org/10.5650/jos.ess15099
Ronald, R.B. (2001). Measurment of primary lipid oxidation products. Current Protocols in Food Analytical chemistry. D2-1.
Rossell, J.B. (1983). Measurement of rancidity. In J.C. Allen and J. Hamilton (ed.) Rancidity in Foods. (pp. 21-46): Applied science publishers, London.
Samaram, S., Mirhosseini, H., Tan, C.P., Ghazali, H.M., Bordbar, S., & Serjouie, A. (2015). Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chemistry, 172, 7-17. doi: https://doi.org/10.1016/j.foodchem.2014.08.068
Schulte, E. (2004). Economical micromethod for determination of polar components in frying fats. European Journal of Lipid Science and Technology, 106(11), 772-776. doi: https://doi.org/10.1002/ejlt.200401004
Shahidi, F., & Wanasundara, U.N. (2002). Methods for measuring oxidative rancidity in fats and oils. In C.C. Akoh & D.B. Min (ed.) Food Lipids: Chemistry, Nutrition and Biotechnology. 3rd ed. (pp. 387-403): CRC Press.
Simopoulos, A.P., Norman, H.A., Gillaspy, J.E., & Duke, J.A. (1992). Common purslane: a source of omega-3 fatty acids and antioxidants. Journal of the American College of Nutrition, 11(4), 374-382. doi: https://doi.org/10.1080/07315724.1992.10718240
Tooranigholsalar, M.R. (2011). Investigating the thermal stability of soybean oil mixed with palm olein and corn. (Unpublished master's thesis), Gorgan University of Agricultural Science and Natural Resources, Faculty of Food Industry, (in Persian)
Uquiche, E., Jerez, M., & Ortiz, J. (2008). Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (gevuina avellana mol). Innovative Food Science & Emerging Technologies, 9(4), 495-500. doi: https://doi.org/10.1016/j.ifset.2008.05.004
Warner, K., & Mounts, T.L. (1993). Frying stability of soybean and canola oils with modified fatty acid compositions. Journal of the American Oil Chemists’ Society, 70(10), 983-988. doi: https://doi.org/10.1007/BF02543024
World Health Organisation (WHO). (1990). Regional publications: Western pacific series No.3. Medicinal plants in Viet Nam. 1990. Institute of Materia Medica, Hanoi. 1990. ISBN No. 92-9061-101-4.
Yang, M., Huang, F., Liu, C., Zheng, C., Zhou, Q., & Wang, H. (2013). Influence of microwave treatment of rapeseed on minor components content and oxidative stability of oil. Food and Bioprocess Technology, 6(11), 206-3216. doi: https://doi.org/10.1007/s11947-012-0987-2
Yoshida, H., Hirakawa, Y., Tomiyama, Y., Nagamizu, T., & Mizushina, Y. (2005). Fatty acid distributions of triacylglycerols and phospholipids in peanut seeds (arachis hypogaea L.) following microwave treatment. Journal of Food Composition and Analysis, 18(1), 3-14. doi: https://doi.org/10.1016/j.jfca.2003.12.004
CAPTCHA Image
Volume 7, Issue 4
February 2019
Pages 393-408
  • Receive Date: 23 January 2018
  • Revise Date: 27 July 2018
  • Accept Date: 12 August 2018