Utilizing Pattern Recognition Methods for Detecting the Adulteration of Glucose and Fructose in Honey

Document Type : Original Paper

Authors

1 Assistant professor, Biosystems Engineering Department, Shiraz University, Shiraz, Iran

2 Professor, Biosystems Engineering Department, Shiraz University, Shiraz, Iran

3 Associate Professor, Food Science Engineering Department, Shiraz University, Shiraz, Iran

Abstract

The aroma of honey is one of the important parameters in honey grading and that is depended on several factors, such as geographical origin, climate, botanical and environmental conditions. The aim of this study was the development and evaluation of an electronic nose as a new, fast and nondestructive method for detecting adulteration in honey. In this research, the ability of electronic nose as a non-destructive system for detecting honey adulteration with different percentages (pure, 20% syrup, 40% syrup, 60% syrup and 80% syrup) was investigated. The developed electronic nose consists of 8 metal oxide semiconductor sensors (MOS) to detect adultery in honey. After preprocessing the data obtained from the electronic nose the chemometric methods were utilized to classify different type of honey. Principle component analysis (PCA), hierarchical cluster analysis (HCA), linear discriminate analysis (LDA), were used to analyze the data obtained from electronic nose. Based on the results, the detection of adulteration was 98.4% of variance for PCA method, 99% accuracy for HCA method and 100% classification power by LDA method.

Keywords

Cabanero, A.I., Recio, J.L., & Ruperez, M. (2006). Liquid chromatography coupled to isotope ratio mass spectrometry: a new perspective on honey adulteration detection. Journal of Agricultural and Food Chemistry, 54(26), 9719-9727 .doi: https://doi.org/10.1021/jf062067x
Cordella, C., Militao, J.S.L.T., Clement, M.-C., Drajnudel, P., & Cabrol-Bass, D. (2005). Detection and quantification of honey adulteration via direct incorporation of sugar syrups or bee-feeding: preliminary study using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and chemometrics. Analytica Chimica Acta, 531(2), 239-248. doi: https://doi.org/10.1016/j.aca.2004.10.018
Cordella, C., Faucon, J.-P., Cabrol-Bass, D., & Sbirrazzuoli, N. (2003). Application of DSC as a tool for honey floral species characterization and adulteration detection. Journal of Thermal Analysis and Calorimetry, 71(1), 279-290. doi: https://doi.org/10.1023/A:1022251208688
Ezhilan, M., Nesakumar, N., Babu, K.J., Srinandan, C.S., & Rayappan, B.B. (2018). An electronic nose for royal delicious apple quality assessment-a tri-layer approach. Food Research International, 109, 44-51. doi: https://doi.org/10.1016/j.foodres.2018.04.009
Freitas, A.M.C., Parreira, C., & Vilas-Boas, L. (2001). The use of an electronic aroma-sensing device to assess coffee differentiation-comparison with SPME gas chromatography-mass spectrometry aroma patterns. Journal of Food Composition and Analysis, 14(5), 513-522. doi: https://doi.org/10.1006/jfca.2001.0987
Gao, L., Liu, T., An, X., Zhang, J., Ma, X., & Cui, J. (2017). Analysis of volatile flavor compounds influencing Chinese-type soy sauces using GC–MS combined with HS-SPME and discrimination with electronic nose. Journal of Food Science and Technology, 54(1), 130-143. doi: https://doi.org/10.1007/s13197-016-2444-0
Hai, Z., & Wang, J. (2006). Detection of adulteration in camellia seed oil and sesame oil using an electronic nose. European Journal of Lipid Science and Technology, 108(2), 116-124. doi: https://doi.org/10.1002/ejlt.200501224
Heidarbeigi, K., Mohtasebi, S.S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., & Rezaei, K. (2015). Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties, 18(7), 1391-1401. doi: https://doi.org/10.1080/10942912.2014.915850
Huo, D., Wu, Y., Yang, M., Fa, H., Luo, X., & Hou, C. (2014). Discrimination of chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays. Food Chemistry, 145, 639-645. doi: https://doi.org/10.1016/j.foodchem.2013.07.142
Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2017). Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Computers and Electronics in Agriculture, 141, 46-53. doi: https://doi.org/10.1016/j.compag.2017.06.018
Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2016). A portable electronic nose as an expert system for aroma-based classification of saffron. Chemometrics and Intelligent Laboratory Systems, 156, 148-156. doi: https://doi.org/10.1016/j.chemolab.2016.05.013
Lammertyn, J., Veraverbeke, E.A., & Irudayaraj, J. (2004). zNose™ technology for the classification of honey based on rapid aroma profiling. Sensors and Actuators B: Chemical, 98(1), 54-62. doi: https://doi.org/10.1016/j.snb.2003.09.012
Man, Y.B.C., Gan, H.L., NorAini, I., Nazimah, S.A.H., & Tan, C.P. (2005). Detection of lard adulteration in RBD palm olein using an electronic nose. Food Chemistry, 90(4), 829-835. doi: https://doi.org/10.1016/j.foodchem.2004.05.062
Melucci, D., Bendini, A., Tesini, F., Barbieri, S., Zappi, A., Vichi, S., Conte, L., & Toschi, T.G. (2016). Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chemistry, 204, 263-273. doi: https://doi.org/10.1016/j.foodchem.2016.02.131
Morales, V., Corzo, N., & Sanz, M.L. (2008). HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups. Food Chemistry, 107(2), 922-928. doi: https://doi.org/10.1016/j.foodchem.2007.08.050
Oliveros, M.C.C., Pavon, J.L.P., Pinto, C.G., Laespada, M.E.F., Cordero, B.M., & Forina, M. (2002). Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Analytica Chimica Acta, 459(2), 219-228. doi: https://doi.org/10.1016/S0003-2670(02)00119-8
Padovan, G.J, De Jong, D., Rodrigues, L.P., & Marchini, J. (2003). Detection of adulteration of commercial honey samples by the 13C/12C isotopic ratio. Food Chemistry, 82(4), 633-636. doi: https://doi.org/10.1016/S0308-8146(02)00504-6
Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (2006). Handbook of machine olfaction: electronic nose technology. John Wiley & Sons.
Roy, R.B., Tudu, B., Shaw, L., Jana, A., Bhattacharyya, N., & Bandyopadhyay, R. (2012). Instrumental testing of tea by combining the responses of electronic nose and tongue. Journal of Food Engineering, 110(3), 356-363. doi: https://doi.org/10.1016/j.jfoodeng.2011.12.037
Sanaeifar, A., Mohtasebi, S.S., Ghasemi-Varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82, 105-114. doi: https://doi.org/10.1016/j.measurement.2015.12.041
Shafiee, S., Polder, G., Minaei, S., Moghaddam-Charkari, N., Van Ruth, S., & Kus, P.M. (2016). Detection of honey adulteration using hyperspectral imaging. IFAC-PapersOnLine, 49(16), 311-314. doi: https://doi.org/10.1016/j.ifacol.2016.10.057
Tudu, B., Kow, B., Bhattacharyya, N., & Bandyopadhyay, R. (2008, December). Comparison of multivariate normalization techniques as applied to electronic nose based pattern classification for black tea. In 2008 3rd International Conference on Sensing Technology (pp. 254-258). IEEE. doi: https://doi.org/10.1109/ICSENST.2008.4757108.
Wang, J., & Zhou, Y. (2007). Electronic‐nose technique: potential for monitoring maturity and shelf life of tomatoes. New Zealand Journal of Agricultural Research, 50(5), 1219-1228. doi: https://doi.org/10.1080/00288230709510405
Yu, H., Wang, J., & Xu, Y. (2007). Identification of adulterated milk using electronic nose. Sensors and Materials, 19(5), 275-285.
Zakaria, A., Shakaff, A.Y.M., Masnan, M.J., Ahmad, M.N., Adom, A.H., Jaafar, M.N., Ghani, S.A., Abdullah, A.H., Aziz, A.H.A., Kamarudin, L.M., Subari, N., & Fikri, N. (2011). A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration. Sensors, 11(8), 7799-7822. doi: https://doi.org/10.3390/s110807799
Zhou, C.-L., Mi, L., Hu, X-Y, & Zhu, B-H. (2017). Evaluation of three pumpkin species: correlation with physicochemical, antioxidant properties and classification using SPME-GC-MS and e-nose methods. Journal of Food Science and Technology, 54(10), 3118-3131. doi: https://doi.org/10.1007/s13197-017-2748-8
CAPTCHA Image
Volume 7, Issue 4
February 2019
Pages 419-430
  • Receive Date: 04 May 2018
  • Revise Date: 29 September 2018
  • Accept Date: 16 October 2018