Studying Transmembrane Pressure, pH and Anionic Surfactant (SDS) Concentration Effects on MEUF Process Performance in Dairy Waste Water Treatment Using Response Surface Methodology Design

Document Type : Original Paper

Authors

1 Assoicated Professor, Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran

2 Assistant Professor, Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran

3 Assistant Professor, Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran

Abstract

Surfactants are widely used to improve membrane processes due to their ability to trap toxic, organic compounds and heavy metals in industrial wastewater treatment. In this study, the micellar-enhanced ultrafiltration process (MEUF) was used to improve the efficiency of ultrafiltration process to reduce COD, TDS, and turbidity and promote membrane permeate flux in dairy wastewater treatment. The influence of three operating parameters: SDS concentration, transmembrane pressure and pH with their interactions effects were evaluated using surface response methodology (RSM) in box-behnken design. The results showed that the concentration of anionic surface active agent as one of the most influential factors due to the formation of concentration polarization layer and increase in the number of micelles had a negative effect on flux, but had a positive effect on the elimination of the contamination indexes. Also, due to the compression of micelles, the amount of pollutant removal was reduced at high operational pressures. In addition, increasing pH improved the removal of COD, TDS, and turbidity.

Keywords

Bade, R., & Lee, S. H. (2011). A review of studies on micellar enhanced ultrafiltration for heavy metals removal from wastewater. Journal of  Water Sustainability, 1(1), 85-102.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. doi:https://doi.org/10.1016/j.talanta.2008.05.019
Crites, R. W., & Tchobanoglous, G. (1998). Small and decentralized wastewater management systems: WCB/McGraw-Hill.
El-Abbassi, A., Khayet, M., & Hafidi, A. (2011). Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Research, 45(15), 4522-4530. doi:https://doi.org/10.1016/j.watres.2011.05.044
Hakimzadeh, V., Mousavi, S. M., Elahi, M., & Razavi, S. M. A. (2017). Purification of Raw Cane Sugar by Micellar‐Enhanced Ultrafiltration Process Using Linear Alkylbenzene Sulphonate. Journal of Food Processing and Preservation, 41(3), e12953. doi:https://doi.org/10.1111/jfpp.12953
Huang, J.-h., Zeng, G.-m., Fang, Y.-y., Qu, Y.-h., & Li, X. (2009). Removal of cadmium ions using micellar-enhanced ultrafiltration with mixed anionic-nonionic surfactants. Journal of Membrane Science, 326(2), 303-309. doi:https://doi.org/10.1016/j.memsci.2008.10.013
Huang, J.-h., Zeng, G.-m., Qu, Y.-h., & Zhang, Z. (2007). Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration. Transactions of Nonferrous Metals Society of China, 17(5), 1112-1117. doi:https://doi.org/10.1016/S1003-6326(07)60234-9
Huang, J.-H., Zhou, C.-F., Zeng, G.-M., Li, X., Niu, J., Huang, H.-J., . . . He, S.-B. (2010). Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane. Journal of Membrane Science, 365(1-2), 138-144. doi:https://doi.org/10.1016/j.memsci.2010.08.052
Landaburu-Aguirre, J. (2012). Micellar-enhanced ultrafiltration for the removal of heavy metals from phosphorous-rich wastewaters. (Doctoral dissertation), University of Oulu, Finland, Retrieved from http://jultika.oulu.fi/files/isbn9789514299117.pdf
Landaburu-Aguirre, J., Pongrácz, E., Perämäki, P., & Keiski, R. L. (2010). Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: use of response surface methodology to improve understanding of process performance and optimisation. Journal of Hazardous Materials, 180(1-3), 524-534. doi:https://doi.org/10.1016/j.jhazmat.2010.04.066
Luo, F., Zeng, G.-M., Huang, J.-H., Zhang, C., Fang, Y.-Y., Qu, Y.-H., . . . Zhou, C.-F. (2010). Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF. Journal of Hazardous Materials, 173(1-3), 455-461. doi:https://doi.org/10.1016/j.jhazmat.2009.08.106
Luo, J., & Ding, L. (2011). Influence of pH on treatment of dairy wastewater by nanofiltration using shear-enhanced filtration system. Desalination, 278(1-3), 150-156. doi:https://doi.org/10.1016/j.desal.2011.05.025
Luo, J., Ding, L., Qi, B., Jaffrin, M. Y., & Wan, Y. (2011). A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater. Bioresource Technology, 102(16), 7437-7442. doi:https://doi.org/10.1016/j.biortech.2011.05.012
Luo, J., Ding, L., Wan, Y., & Jaffrin, M. Y. (2012). Threshold flux for shear-enhanced nanofiltration: experimental observation in dairy wastewater treatment. Journal of Membrane Science, 409, 276-284. doi:https://doi.org/10.1016/j.memsci.2012.03.065
Malakootian, M., Mansoorian, H., & Moosazadeh, M. (2010). Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water. Desalination, 255(1-3), 67-71. doi:https://doi.org/10.1016/j.desal.2010.01.015
Ngang, H., Ahmad, A., Low, S., & Ooi, B. (2012). Preparation of mixed-matrix membranes for micellar enhanced ultrafiltration based on response surface methodology. Desalination, 293, 7-20. doi:https://doi.org/10.1016/j.desal.2012.02.018
Puasa, S. W., Ruzitah, M. S., & Sharifah, A. S. A. K. (2011, June). An overview of micellar-enhanced ultrafiltration in wastewater treatment process. Paper presented at the Proceedings of international conference on environment and industrial innovation (ICEII 2011), Kuala Lumpur, Malaysia.
Purkait, M., DasGupta, S., & De, S. (2004). Resistance in series model for micellar enhanced ultrafiltration of eosin dye. Journal of Colloid and Interface Science, 270(2), 496-506. doi:https://doi.org/10.1016/j.jcis.2003.10.030
Rahmanian, B., Pakizeh, M., Esfandyari, M., Heshmatnezhad, F., & Maskooki, A. (2011a). Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF). Journal of Hazardous Materials, 192(2), 585-592. doi:https://doi.org/10.1016/j.jhazmat.2011.05.051
Rahmanian, B., Pakizeh, M., Mansoori, S. A. A., & Abedini, R. (2011b). Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process. Journal of Hazardous Materials, 187(1-3), 67-74. doi:https://doi.org/10.1016/j.jhazmat.2010.11.135
Rahmanian, B., Pakizeh, M., & Maskooki, A. (2010). Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane. Journal of Hazardous Materials, 184(1-3), 261-267. doi:https://doi.org/10.1016/j.jhazmat.2010.08.031
Samper, E., Rodríguez, M., De la Rubia, M., & Prats, D. (2009). Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and Purification Technology, 65(3), 337-342. doi:https://doi.org/10.1016/j.seppur.2008.11.013
Sikder, S. K. (2003). Application of sodium deoxycholate for separation of heavy metals. (Doctoral dissertation), Massey University, Palmerston North, New Zealand, Retrieved from https://mro.massey.ac.nz/bitstream/handle/10179/1789/02_whole.pdf?sequence=1&isAllowed=y
Switzar, L., Giera, M., Lingeman, H., Irth, H., & Niessen, W. M. (2011). Protein digestion optimization for characterization of drug–protein adducts using response surface modeling. Journal of Chromatography A, 1218(13), 1715-1723. doi:https://doi.org/10.1016/j.chroma.2010.12.043
Talebpour, Z., Ghassempour, A., Abbaci, M., & Aboul-Enein, H. Y. (2009). Optimization of microwave-assisted extraction for the determination of glycyrrhizin in menthazin herbal drug by experimental design methodology. Chromatographia, 70(1-2), 191-197. doi:https://doi.org/10.1365/s10337-009-1146-4
Zeng, G.-M., Li, X., Huang, J.-H., Zhang, C., Zhou, C.-F., Niu, J., . . . Li, F. (2011). Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS. Journal of Hazardous Materials, 185(2-3), 1304-1310. doi:https://doi.org/10.1016/j.jhazmat.2010.10.046
CAPTCHA Image
Volume 8, Issue 1
April 2019
Pages 67-78
  • Receive Date: 17 December 2017
  • Revise Date: 12 August 2018
  • Accept Date: 23 August 2018