Evaluation of the Release of Microcapsulated Vanillin under Simulated Oral Conditions

Document Type : Original Paper

Authors

1 Professor, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran

3 PhD, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mshhad, Iran

4 PhD Student, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this study, vanillin release from multilayered microcapsules consisting of isolated soy protein, modified starch, and chitosan produced by spray dryer was investigated. Vanillin release was studied using a mouth simulator. The parameters included oral variable such as saliva and the tension on vanillin release. To examine the release of vanillin, the release of these microcapsules (one and two-layers) at 37 °C and pH=6.8, as well as frequent chewing (0, 30 and 55 rpm) were investigated. The results of the release of single (isolated soy protein) and twolayers (modified starch) microcapsules according to the Korsemeyer- Peppas equation showed that the two-layer microcapsules were less diffusion coefficient than the one-layer microcapsules. Mean dissolution time for two-layer and one-layer were calculated 1.24 and 1.08 h at 37 °C, respectively.Therefore, at the same conditions (adding saliva and shear stress), the release rate of vanillin from the two-layer microcapsules was lower than the one-layer microcapsules due to the modified starch coating around the shells and the increase in the thickness of the shell of the two-layered microcapsule, which reduces the release velocity of vanillin from the two-layer microcapsules.

Keywords

Ansarifar, E., Mohebbi, M., Shahidi, F., Koocheki, A., & Ramezanian, N. (2017). Novel multilayer microcapsules based on soy protein isolate fibrils and high methoxyl pectin: Production, characterization and release modeling. International Journal of Biological Macromolecules, 97, 761-769. doi:https://doi.org/10.1016/j.ijbiomac.2017.01.056
AOAC. (1995). Arlington, Va.: Official methods of analysis of AOAC International, pv (loose-leaf).
Arifin, D. Y., Lee, L. Y., & Wang, C.-H. (2006). Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Advanced Drug Delivery Reviews, 58(12), 1274-1325. doi:https://doi.org/10.1016/j.addr.2006.09.007
Balcerzak, J., & Mucha, M. (2010). Analysis of model drug release kinetics from complex matrices of polylactide-chitosan. Progress on Chemistry and Application of Chitin and its Derivatives, 15, 117-126.
Benjamin, O., Silcock, P., Leus, M., & Everett, D. W. (2012). Multilayer emulsions as delivery systems for controlled release of volatile compounds using pH and salt triggers. Food Hydrocolloids, 27(1), 109-118. doi:https://doi.org/10.1016/j.foodhyd.2011.08.008
Chuah, A. M., Kuroiwa, T., Kobayashi, I., & Nakajima, M. (2009). Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water monodisperse emulsion prepared by microchannel emulsification. Food Hydrocolloids, 23(3), 600-610. doi:https://doi.org/10.1016/j.foodhyd.2008.03.014
Comunian, T. A., Thomazini, M., Alves, A. J. G., de Matos Junior, F. E., de Carvalho Balieiro, J. C., & Favaro-Trindade, C. S. (2013). Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, 52(1), 373-379. doi:https://doi.org/10.1016/j.foodres.2013.03.028
Dash, S., Narasimha Murthy, P., Nath, L., & Chowdhury, P. (2010). Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems (Vol. 67).
de Roos, K. B. (2000). Physiochemical Models of Flavor Release from Foods Flavor Release (Vol. 763, pp. 126-141): American Chemical Society.
Finney, J., Buffo, R., & Reineccius, G. A. (2002). Effects of Type of Atomization and Processing Temperatures on the Physical Properties and Stability of Spray-Dried Flavors. Journal of Food Science, 67(3), 1108-1114. doi:https://doi.org/10.1111/j.1365-2621.2002.tb09461.x
Grigoriev, D. O., & Miller, R. (2009). Mono- and multilayer covered drops as carriers. Current Opinion in Colloid & Interface Science, 14(1), 48-59. doi:https://doi.org/10.1016/j.cocis.2008.03.003
Huang, G.-Q., Sun, Y.-T., Xiao, J.-X., & Yang, J. (2012). Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 135(2), 534-539. doi:https://doi.org/10.1016/j.foodchem.2012.04.140
Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technology, 26(7), 816-835. doi:https://doi.org/10.1080/07373930802135972
Lakkis, J. M. (2007). Encapsulation and controlled release technologies in food systems: Wiley Online Library.
Najafi, M. N., Kadkhodaee, R., & Mortazavi, S. A. (2011). Effect of drying process and wall material on the properties of encapsulated cardamom oil. Food biophysics, 6(1), 68-76. doi:https://doi.org/10.1007/s11483-010-9176-x
Nilsson, L., & Bergenståhl, B. (2007). Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science, 308(2), 508-513. doi:https://doi.org/10.1016/j.jcis.2007.01.024
Nori, M. P., Favaro-Trindade, C. S., Matias de Alencar, S., Thomazini, M., de Camargo Balieiro, J. C., & Contreras Castillo, C. J. (2011). Microencapsulation of propolis extract by complex coacervation. LWT - Food Science and Technology, 44(2), 429-435. doi:https://doi.org/10.1016/j.lwt.2010.09.010
Noshad, M., Mohebbi, M., Shahidi, F., & Koocheki, A. (2015). Effect of layer-by-layer polyelectrolyte method on encapsulation of vanillin. International Journal of Biological Macromolecules, 81, 803-808. doi:https://doi.org/10.1016/j.ijbiomac.2015.09.012
Pothakamury, U. R., & Barbosa-Cánovas, G. V. (1995). Fundamental aspects of controlled release in foods. Trends in Food Science & Technology, 6(12), 397-406. doi:https://doi.org/10.1016/S0924-2244(00)89218-3
Qiu, X., Leporatti, S., Donath, E., & Möhwald, H. (2001). Studies on the Drug Release Properties of Polysaccharide Multilayers Encapsulated Ibuprofen Microparticles. Langmuir, 17(17), 5375-5380. doi:https://doi.org/10.1021/la010201w
Rocha-Selmi, G. A., Bozza, F. T., Thomazini, M., Bolini, H. M. A., & Fávaro-Trindade, C. S. (2012). Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chemistry, 139(1), 72-78. doi:https://doi.org/10.1016/j.foodchem.2013.01.114
Rocha, G. A., Fávaro-Trindade, C. S., & Grosso, C. R. F. (2012). Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food and Bioproducts Processing, 90(1), 37-42. doi:https://doi.org/10.1016/j.fbp.2011.01.001
Rodríguez, S. D., Wilderjans, T., Sosa, N., & Bernik, D. L. (2013). Image texture analysis and gas sensor array studies applied to vanilla encapsulation by octenyl succinic anhydride starches. Journal of Food Research, 2(2), 36-48. doi:https://doi.org/10.5539/jfr.v2n2p36
Salles, C., Tarrega, A., Mielle, P., Maratray, J., Gorria, P., Liaboeuf, J., & Liodenot, J. J. (2007). Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment. Journal of Food Engineering, 82(2), 189-198. doi:https://doi.org/10.1016/j.jfoodeng.2007.02.008
Siefarth, C., Tyapkova, O., Beauchamp, J., Schweiggert, U., Buettner, A., & Bader, S. (2011). Influence of polyols and bulking agents on flavour release from low-viscosity solutions. Food Chemistry, 129(4), 1462-1468. doi:https://doi.org/10.1016/j.foodchem.2011.05.115
Siepmann, J., & Siepmann, F. (2008). Mathematical modeling of drug delivery. International Journal of Pharmaceutics, 364(2), 328-343. doi:https://doi.org/10.1016/j.ijpharm.2008.09.004
van Ruth, S. M., & Roozen, J. P. (2000). Influence of mastication and saliva on aroma release in a model mouth system. Food Chemistry, 71(3), 339-345. doi:https://doi.org/10.1016/S0308-8146(00)00186-2
Ye, S., Wang, C., Liu, X., & Tong, Z. (2005). Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release. Journal of Biomaterials Science, Polymer Edition, 16(7), 909-923. doi:https://doi.org/10.1163/1568562054255691
Zandi. (2014). Production of colloidosomes as Dieacetyl carrier and modelling of it`s release using multi-agent systems. (Unpublished doctoral dissertation), Department of food science and technology, Ferdowsi university of Mashhad, Iran (in Persian).
Zuidam, N., & Nedovic, V. (2010). Encapsulation Technologies for Active Food Ingredients and Food Processing: Springer, New York, NY.
CAPTCHA Image
Volume 8, Issue 2
July 2019
Pages 111-124
  • Receive Date: 26 July 2017
  • Revise Date: 09 March 2018
  • Accept Date: 28 April 2018