Modeling and Optimization of Physicochemical and Organoleptical Properties and Lactobacillus acidophilus Viability in ltrafiltrated Synbiotic Cheese, Containing Microbial Transglutaminase Enzyme, Whey and Inulin

Document Type : Original Paper

Authors

1 M.Sc., Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

2 Associate Professor, Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

3 Assistant Professor, Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

Abstract

The growing demand of consumers for healthy foods has created a great incentive for the advancement of new food products around the world. Functional foods, particularly synbiotic products, are one of these products. In this research, the effects of microbial transglutaminase enzyme (MTG, 0-1 units per gram of milk protein), demineralized whey powder (DWP) solution containing 34% DWP (0-16%) and inulin (0-2%) on the physicochemical, sensorial and microbial properties of Iranian white ultrafiltrated symbiotic cheese was investigated using the response surface method (RSM). For cheese production, Lactobacillus acidophilus LA5 was used as probiotic and inulin and DWP solution were used as prebiotics. The results showed that by increasing of MTG concentration, moisture content of cheeses increased significantly (p < /em><0.05), but acidity and other physicochemical properties and sensory attributes did not change noticeably. By increasing DWP substitution with ultrafiltrate, fat and protein values (p < /em><0.01) and all the sensory attributes (p < /em><0.05) significantly decreased but acidity did not change remarkably. Furthermore, with increasing inulin, acidity, color and appearance, odor and flavor (p < /em><0.05) increased and moisture content (p < /em><0.01) decreased significantly. By increasing of MTG concentration, the number of probiotic bacteria reduced significantly but addition of DWP solution (p < /em><0.05) and inulin (p < /em>>0.05) had adverse effect and enhanced it. The optimization results showed that by using 0.43 U/g protein of MTG, 8.24% DWP solution and 0.71% of inulin, an Iranian white symbiotic ultrafiltrated cheese with appropriate physicochemical and sensory properties could be produced. The optimized cheese had adequate total acceptability (7.76 score) and high probiotic count (6.96 logcfu/g).

Keywords

Akalın, A., Tokuşoğlu, Ö., Gönç, S., & Aycan, Ş. (2007). Occurrence of conjugated linoleic acid in probiotic yoghurts supplemented with fructooligosaccharide. International Dairy Journal, 17(9), 1089-1095.
Alimoradi, F., Hojaji, E., Jooyandeh, H., Moghadam, S. A. H. Z., & Moludi, J. (2016). Whey Proteins: Healthbenefits And Food Applications. Journal of International Research in Medical and Pharmaceutical Sciences, 9(2), 63-73.
Alves, L. L., Richards, N. S., Mattanna, P., Andrade, D. F., S Rezer, A. P., Milani, L. I., . . . Faria, J. A. (2013). Cream cheese as a symbiotic food carrier using B ifidobacterium animalis B b‐12 and L actobacillus acidophilus L a‐5 and inulin. International Journal of Dairy Technology, 66(1), 63-69.
Antunes, A., Antunes, A., & Cardello, H. (2004). Chemical, physical, microstructural and sensory properties of set fat-free yogurts stabilized with whey protein concentrate. Milchwissenschaft, 59(3-4), 161-165.
AOAC. (2000). Official Methods of Analysis. 17th ed Association of official analytical chemists. Gaithersburg, Maryland, USA.
Araújo, E. A., de Carvalho, A. F., Leandro, E. S., Furtado, M. M., & de Moraes, C. A. (2010). Development of a symbiotic cottage cheese added with Lactobacillus delbrueckii UFV H2b20 and inulin. Journal of Functional Foods, 2(1), 85-89. doi:https://doi.org/10.1016/j.jff.2009.12.002
Bönisch, M. P., Tolkach, A., & Kulozik, U. (2006). Inactivation of an indigenous transglutaminase inhibitor in milk serum by means of UHT-treatment and membrane separation techniques. International Dairy Journal, 16(6), 669-678. doi:https://doi.org/10.1016/j.idairyj.2005.08.014
Buriti, F. C., Cardarelli, H. R., Filisetti, T. M., & Saad, S. M. (2007). Synbiotic potential of fresh cream cheese supplemented with inulin and Lactobacillus paracasei in co-culture with Streptococcus thermophilus. Food chemistry, 104(4), 1605-1610. doi:https://doi.org/10.1016/j.foodchem.2007.03.001
Butel, M.-J. (2014). Probiotics, gut microbiota and health. Médecine et maladies infectieuses, 44(1), 1-8. doi:https://doi.org/10.1016/j.medmal.2013.10.002
Cardarelli, H. R., Buriti, F. C. A., Castro, I. A., & Saad, S. M. I. (2008). Inulin and oligofructose improve sensory quality and increase the probiotic viable count in potentially synbiotic petit-suisse cheese. LWT - Food Science and Technology, 41(6), 1037-1046. doi:https://doi.org/10.1016/j.lwt.2007.07.001
Codex Alimentarius Commission. (2003). Codex standard for fermented milks. [Codex Sandard No. 243-2003].   Retrieved from http://www.fao.org/input/download/standards/400/CXS_243e.pdf
Danesh, E., Jooyandeh, H., & Goudarzi, M. (2017a). Improving the rheological properties of low-fat Iranian UF-Feta cheese by incorporation of whey protein concentrate and enzymatic treatment of transglutaminase. Iranian Journal Food Science Technology, 14(67), 285-298. (in Persian).
Danesh, E., Jooyandeh, H., & Goudarzi, M. (2017b). The influence of transglutaminase treatment on physicochemical, rheological and organoleptical attributes of low-fat ultrafiltered cheese incorporated with whey proteins during shelf life Journal of Food Technology and Nutrition, 14(4), 25-36. (in Persian).
Dmytrów, I., Jasinska, M., & Dmytrów, K. (2010). Effect of microbiological transglutaminase on selected physicochemical properties of tvarog. Italian Journal of Food Science, 22(4), 449-460.
Donkor, O. N., Nilmini, S., Stolic, P., Vasiljevic, T., & Shah, N. (2007). Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. International Dairy Journal, 17(6), 657-665. doi:https://doi.org/10.1016/j.idairyj.2006.08.006
Dybing, S., & Smith, D. (1998). The ability of phosphates or κ-carrageenan to coagulate whey proteins and the possible uses of such coagula in cheese manufacture. Journal of dairy science, 81(2), 309-317. doi:https://doi.org/10.3168/jds.S0022-0302(98)75579-1
Farnsworth, J., Li, J., Hendricks, G., & Guo, M. (2006). Effects of transglutaminase treatment on functional properties and probiotic culture survivability of goat milk yogurt. Small Ruminant Research, 65(1-2), 113-121. doi:https://doi.org/10.1016/j.smallrumres.2005.05.036
Geiser, M. (2003). The wonders of whey protein. NSCA’s Performance Training Journal, 2(5), 13-15.
Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. (2010). Functional foods and nondairy probiotic food development: trends, concepts, and products. Comprehensive reviews in food science and food safety, 9(3), 292-302. doi:https://doi.org/10.1111/j.1541-4337.2010.00110.x
Guggisberg, D., Cuthbert-Steven, J., Piccinali, P., Bütikofer, U., & Eberhard, P. (2009). Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. International Dairy Journal, 19(2), 107-115. doi:https://doi.org/10.1016/j.idairyj.2008.07.009
Imm, J., Lian, P., & Lee, C. (2000). Gelation and water binding properties of transglutaminase‐treated skim milk powder. Journal of Food Science, 65(2), 200-205. doi:https://doi.org/10.1111/j.1365-2621.2000.tb15979.x
Jaros, D., Partschefeld, C., Henle, T., & Rohm, H. (2006). Transglutaminase in dairy products: chemistry, physics, applications. Journal of texture studies, 37(2), 113-155. doi:https://doi.org/10.1111/j.1745-4603.2006.00042.x
Jirsaraei, B., Pourahmad, R., & Fadaei, N. V. (2017). The Effect of Inulin and Lactulose on survival of Lactobacillus casei and physicochemical and sensory characteristics of probiotic Ultrafiltrated Feta Cheese. Journal of Food Technology and Nutrition, 14(1), 35-46. (in Persian).
Jooyandeh, H. (2009). Effect of fermented whey protein concentrate on texture of Iranian white cheese. Journal of texture studies, 40(5), 497-510. doi:https://doi.org/10.1111/j.1745-4603.2009.00194.x
Jooyandeh, H., & Minhas, K. S. (2009). Effect of addition of fermented whey protein concentrate on cheese yield and fat and protein recoveries of Feta cheese. Journal of Food Science and Technology (Mysore), 46(3), 221-224.
Jovanović, S., Barać, M., & Maćej, O. (2005). Whey proteins-properties and possibility of application. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 55(3), 215-233.
Kailasapathy, K., & Supriadi, D. (1998). Effect of partially replacing skim milk powder with whey protein concentrate on the sensory qualities of lactose hydrolysed acidophilus yogurt. Milchwissenschaft, 53(7), 385-389.
Kaminarides, S. (2015). A modified form of Myzithra cheese produced by substituting the fresh cheese whey by dried whey protein concentrate and ovine milk and cream. Small Ruminant Research, 131, 118-122. doi:https://doi.org/10.1016/j.smallrumres.2015.07.020
Katsiari, M., Voutsinas, L., Kondyli, E., & Alichanidis, E. (2002). Flavour enhancement of low-fat Feta-type cheese using a commercial adjunct culture. Food chemistry, 79(2), 193-198. doi:https://doi.org/10.1016/S0308-8146(02)00131-0
Kuraishi, C., Yamazaki, K., & Susa, Y. (2001). Transglutaminase: its utilization in the food industry. Food Reviews International, 17(2), 221-246. doi:https://doi.org/10.1081/FRI-100001258
Lorenzen, P. C., Neve, H., Mautner, A., & Schlimme, E. (2002). Effect of enzymatic cross‐linking of milk proteins on functional properties of set‐style yoghurt. International Journal of Dairy Technology, 55(3), 152-157. doi:https://doi.org/10.1046/j.1471-0307.2002.00065.x
Madureira, A. R., Pintado, A. I., Gomes, A. M., Pintado, M. E., & Malcata, F. X. (2011). Rheological, textural and microstructural features of probiotic whey cheeses. LWT-Food Science and Technology, 44(1), 75-81. doi:https://doi.org/10.1016/j.lwt.2010.06.030
Maki, K. C., Dicklin, M. R., Cyrowski, M., Umporowicz, D. M., Nagata, Y., Moon, G., . . . Davidson, M. H. (2002). Improved calcium absorption from a newly formulated beverage compared with a calcium carbonate tablet. Nutrition Research, 22(10), 1163-1176. doi:https://doi.org/10.1016/S0271-5317(02)00418-9
Mortazavian, A., Ehsani, M., Sohrabvandi, S., & Reinheimer, J. (2007). MRS-bile agar: its suitability for the enumeration of mixed probiotic cultures in cultured dairy products. Milchwissenschaft, 62(3), 270-272.
Neve, H., Lorenzen, P. C., Mautner, A., Schlimme, E., & Heller, K. (2001). Effects of transglutaminase treatment on the production of set skim milk yoghurt: microbiological aspects. Kieler Milchwirtschaftliche Forschungsberichte, 53(4), 347-361.
Özer, B., Hayaloglu, A. A., Yaman, H., Gürsoy, A., & Şener, L. (2013). Simultaneous use of transglutaminase and rennet in white-brined cheese production. International Dairy Journal, 33(2), 129-134. doi:https://doi.org/10.1016/j.idairyj.2013.02.001
Ozer, B., Kirmaci, H. A., Oztekin, S., Hayaloglu, A., & Atamer, M. (2007). Incorporation of microbial transglutaminase into non-fat yogurt production. International Dairy Journal, 17(3), 199-207. doi:https://doi.org/10.1016/j.idairyj.2006.02.007
Pavunc, A. L., Beganović, J., Kos, B., Buneta, A., Beluhan, S., & Šušković, J. (2011). Influence of microencapsulation and transglutaminase on viability of probiotic strain Lactobacillus helveticus M92 and consistency of set yoghurt. International Journal of Dairy Technology, 64(2), 254-261. doi:https://doi.org/10.1111/j.1471-0307.2010.00647.x
Pierro, P. D., Mariniello, L., Sorrentino, A., Giosafatto, C. V. L., Chianese, L., & Porta, R. (2010). Transglutaminase-induced chemical and rheological properties of cheese. Food Biotechnology, 24(2), 107-120. doi:https://doi.org/10.1080/08905431003784465
Pinto, S., Rathour, A., Prajapati, J., Jana, A., & Solanky, M. (2007). Utilization of whey protein concentrate in processed cheese spread. Indian Journal of Natural Products and Resources, 6(5), 398-401.
Poppitt, S. D., Proctor, J., McGill, A.-T., Wiessing, K. R., Falk, S., Xin, L., . . . Hall, R. S. (2011). Low-dose whey protein-enriched water beverages alter satiety in a study of overweight women. Appetite, 56(2), 456-464. doi:https://doi.org/10.1016/j.appet.2011.01.015
Radošević, V., Tonković, K., Gregurek, L., Kos, B., & Šušković, J. (2007). Production of fresh probiotic cheese with addition of transglutaminase. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 57(1), 15-29.
Rao, V. A. (2001). The prebiotic properties of oligofructose at low intake levels. Nutrition Research, 21(6), 843-848. doi:https://doi.org/10.1016/S0271-5317(01)00284-6
Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiology, 27(1), 1-11. doi:https://doi.org/10.1016/j.fm.2008.06.008
Sayadi, A., Madadlou, A., & Khosrowshahi, A. (2013). Enzymatic cross-linking of whey proteins in low fat Iranian white cheese. International Dairy Journal, 29(2), 88-92. doi:https://doi.org/10.1016/j.idairyj.2012.10.006
Staffolo, M. D., Bertola, N., Martino, M., & Bevilacqua, y. A. (2004). Influence of dietary fiber addition on sensory and rheological properties of yogurt. International Dairy Journal, 14(3), 263-268. doi:https://doi.org/10.1016/j.idairyj.2003.08.004
Temiz, H., & Dağyıldız, K. (2017). Effects of Microbial Transglutaminase on Physicochemical, Microbial and Sensorial Properties of Kefir Produced by Using Mixture Cow's and Soymilk. Korean journal for food science of animal resources, 37(4), 606-616. doi:https://doi.org/10.5851/kosfa.2017.37.4.606
Tripathi, M. K., & Giri, S. K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. doi:https://doi.org/10.1016/j.jff.2014.04.030
CAPTCHA Image
Volume 8, Issue 2
July 2019
Pages 137-150
  • Receive Date: 29 June 2018
  • Revise Date: 22 October 2018
  • Accept Date: 01 November 2018