Extraction Efficiency of β-D-glucan from Waste Part of Bottom Mushroom (Agaricus bisprous) and its Ability to Adsorb Aflatoxin B1

Document Type : Original Paper

Authors

1 Ph.D. Student of Food Microbiology, Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

2 Assistant Professor, Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

3 Associate Professor, Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

β-Glucans which are found in a variety of natural sources such as yeast, mushrooms, bacteria, algae, barley and oat show different biological effects. They are composed of D-glucose units linked by β-glycosidic bonds to each other. Adsorption of fungal toxins such as aflatoxin by β-glucan has been widely considered in recent years. Aflatoxins are a group of naturally-occurring carcinogens that are known to contaminate different human and animal foodstuffs. Aflatoxin B1 is the most genotoxic hepatocarcinogenic compound among all types of the aflatoxins. The efficiency of adsorption of fungal toxins is directly related to the molecular structure, extraction method and source of β-glucan. Fungal derived β-glucan consists of β (1-3) bonds in main and β (1-6) at lateral branching point, with the specification of short shoulder length, has high ability to adsorb fungal toxins.  In this study, for the first time, the efficiency of various extraction methods of β-glucan from stem cell wall of bottom mushroom (Agaricus bisprous) was measured and the ability to adsorb aflatoxin B1 was evaluated. The results showed that although the yield of β-glucan from acid based extraction was higher than other methods (20.5%), the hot alkaline extracted β-glucan could adsorb and discard 90.2% of aflatoxin B1 from contaminated samples based on HPLC analysis.

Keywords

Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Din, A. (2009). Physicochemical and functional properties of barley β‐glucan as affected by different extraction procedures. International journal of food science & technology, 44(1), 181-187. doi:https://doi.org/10.1111/j.1365-2621.2008.01721.x
Bueno, D. J., Casale, C. H., Pizzolitto, R. P., Salvano, M. A., & Oliver, G. (2007). Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: a theoretical model. Journal of Food Protection, 70(9), 2148-2154. doi:https://doi.org/10.4315/0362-028X-70.9.2148
Carbonero, E. R., Ruthes, A. C., Freitas, C. S., Utrilla, P., Gálvez, J., Silva, E. V. d., . . . Iacomini, M. (2012). Chemical and biological properties of a highly branched β-glucan from edible mushroom Pleurotus sajor-caju. Carbohydrate polymers, 90(2), 814-819. doi:https://doi.org/10.1016/j.carbpol.2012.06.005
Dhand, N., Joshi, D., & Jand, S. (1998). Fungal contaminants of dairy feed and their toxigenicity. Indian Journal of Animal Sciences, 68(10), 1095-1096.
Di Natale, F., Gallo, M., & Nigro, R. (2009). Adsorbents selection for aflatoxins removal in bovine milks. Journal of Food Engineering, 95(1), 186-191. doi:https://doi.org/10.1016/j.jfoodeng.2009.04.023
Dixon, J., Kannewischer, I., Arvide, M. T., & Velazquez, A. B. (2008). Aflatoxin sequestration in animal feeds by quality-labeled smectite clays: An introductory plan. Applied Clay Science, 40(1-4), 201-208.
Doyle, M., Applebaum, R., Brackett, R., & Marth, E. (1982). Physical, chemical and biological degradation of mycotoxins in foods and agricultural commodities. Journal of Food Protection, 45(10), 964-971. doi:https://doi.org/10.4315/0362-028X-45.10.964
Dubost, N. J., Ou, B., & Beelman, R. B. (2007). Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chemistry, 105(2), 727-735.
El-Naggar, M. A., & Thabit, T. M. (2014). Evaluation of β-d-glucan biopolymer as a novel mycotoxin binder for fumonisin and deoxynivalenol in soybean feed. Foodborne pathogens and disease, 11(6), 433-438. doi:https://doi.org/10.1089/fpd.2013.1711
Huwig, A., Freimund, S., Käppeli, O., & Dutler, H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122(2), 179-188. doi:https://doi.org/10.1016/S0378-4274(01)00360-5
International Agency for Research on Cancer. (1992). Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins. Apresentado em: IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Some Naturally Occurring Substances: Food Items and Constituents. Lyon.
Iranian National Standardization Organization. (2012). Food and feed stuffs-Determination of aflatoxins B&G by HPLC method using immunoaffinity column clean up-Test method. (ISIRI Standard No. 6872, 1st. Revision). Retrieved from http://standard.isiri.gov.ir/StandardView.aspx?Id=35764 (in Persian)
Ishibashi, K.-i., Miura, N. N., Adachi, Y., Tamura, H., Tanaka, S., & Ohno, N. (2004). The solubilization and biological activities of Aspergillus β-(1š3)-d-glucan. FEMS Immunology & Medical Microbiology, 42(2), 155-166.
Ishibashi, K. i., Yoshida, M., Nakabayashi, I., Shinohara, H., Miura, N. N., Adachi, Y., & Ohno, N. (2005). Role of anti‐β‐glucan antibody in host defense against fungi. Pathogens and Disease, 44(1), 99-109.
Jantaramanant, P., Sermwittayawong, D., Noipha, K., Hutadilok-Towatana, N., & Wititsuwannakul, R. (2014). β-glucan-containing polysaccharide extract from the grey oyster mushroom [Pleurotus sajor-caju (Fr.) Sing.] stimulates glucose uptake by the L6 myotubes. International Food Research Journal, 21(2).
Kumar, C. G., Joo, H.-S., Choi, J.-W., Koo, Y.-M., & Chang, C.-S. (2004). Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme and microbial technology, 34(7), 673-681.
Kumar, P., Mahato, D. K., Kamle, M., Mohanta, T. K., & Kang, S. G. (2017). Aflatoxins: a global concern for food safety, human health and their management. Frontiers in microbiology, 7, 2170. doi:https://doi.org/10.3389/fmicb.2016.02170
Lizárraga-Paulín, E. G., Moreno-Martínez, E., & Miranda-Castro, S. P. (2011). Aflatoxins and their impact on human and animal health: An emerging problem. In Aflatoxins-Biochemistry and Molecular Biology: InTech.
McLean, M., & Dutton, M. F. (1995). Cellular interactions and metabolism of aflatoxin: An update. Pharmacology & Therapeutics, 65(2), 163-192. doi:https://doi.org/10.1016/0163-7258(94)00054-7
Palacios, I., García-Lafuente, A., Guillamón, E., & Villares, A. (2012). Novel isolation of water-soluble polysaccharides from the fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydrate Research, 358, 72-77. doi:https://doi.org/10.1016/j.carres.2012.06.016
Peumans, W. J., Barre, A., Derycke, V., Rougé, P., Zhang, W., May, G. D., . . . Van Damme, E. J. (2000). Purification, characterization and structural analysis of an abundant β‐1, 3‐glucanase from banana fruit. European Journal of Biochemistry, 267(4), 1188-1195.
Rahar, S., Swami, G., Nagpal, N., Nagpal, M. A., & Singh, G. S. (2011). Preparation, characterization, and biological properties of β-glucans. Journal of advanced pharmaceutical technology & research, 2(2), 94. doi:https://doi.org/10.4103/2231-4040.82953
Ramos, A., & Hernandez, E. (1997). Prevention of aflatoxicosis in farm animals by means of hydrated sodium calcium aluminosilicate addition to feedstuffs: a review. Animal Feed Science and Technology, 65(1-4), 197-206.
Resnik, S., Neira, S., Pacin, A., Martinez, E., Apro, N., & Latreite, S. (1996). A survey of the natural occurrence of aflatoxins and zearalenone in Argentine field maize: 1983–1994. Food Additives & Contaminants, 13(1), 115-120.
Shetty, P. H., & Jespersen, L. (2006). Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science & Technology, 17(2), 48-55. doi:https://doi.org/10.1016/j.tifs.2005.10.004
Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., . . . Čopíková, J. (2009). Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate polymers, 76(4), 548-556. doi:https://doi.org/10.1016/j.carbpol.2008.11.021
Szwengiel, A., & Stachowiak, B. (2016). Deproteinization of water-soluble ß-glucan during acid extraction from fruiting bodies of Pleurotus ostreatus mushrooms. Carbohydrate polymers, 146, 310-319. doi:https://doi.org/10.1016/j.carbpol.2016.03.015
Tian, Y., Zeng, H., Xu, Z., Zheng, B., Lin, Y., Gan, C., & Lo, Y. M. (2012). Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydrate Polymers, 88(2), 522-529.
Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry-A review. Innovative Food Science & Emerging Technologies, 9(2), 161-169.
Whitaker, T., Horwitz, W., Albert, R., & Nesheim, S. (1996). Variability associated with analytical methods used to measure aflatoxin in agricultural commodities. Journal of AOAC International, 79(2), 476-485.
Zhu, F., Du, B., Bian, Z., & Xu, B. (2015). Beta-glucans from edible and medicinal mushrooms: Characteristics, physicochemical and biological activities. Journal of Food Composition and Analysis, 41, 165-173. doi:https://doi.org/10.1016/j.jfca.2015.01.019
CAPTCHA Image
Volume 8, Issue 4
February 2020
Pages 314-325
  • Receive Date: 19 November 2018
  • Revise Date: 15 January 2019
  • Accept Date: 09 February 2019