Antioxidant Activity of Faba Bean (Vicia Faba) Proteins Hydrolysates Produced by Alcalase and Trypsin

Document Type : Original Paper

Authors

1 PhD. Student, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Associate Professor, Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Enzymetic modification of proteins in order to break down specific peptide bonds and protein modification is widely used in the food industry. In this research, protein of faba bean seeds was hydrolyzed using alcalase and trypsin enzymes at three concentrations (1, 2 and 3%) and reaction times of 1-6 h at optimal temperature and pH of enzymes (50 and 37 °C, pH 8.5 and 7, respectively). Hydrolysis degree, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and iron chelating activity of hydrolyzed proteins were investigated. The results showed that the degree of hydrolysis increased with increasing reaction time and concentration of alcalase and trypsin enzymes. The time of hydrolysis and type of enzyme has a significant effect on the degree of hydrolysis, the antioxidant and chelating activity of the faba bean protein hydrolysates (p < /em><0.05). The proteins hydrolyzed by alcalase at concentration of 3% and reaction time of 3 h had the highest antioxidant (75.41%) and metal chelating activity (55.95%). At the 1 and 2% concentration of trypsin, the highest DPPH radical scavenging activity was observed at 4 h which was 42.38 and 53.7 %, respectively. The most metal chelating activity in trypsin hydrolyzed treatments was observed in a reaction time of 2 h, after which the activity decreased. DPPH radical scavenging and metal chelating activity increased with increasing enzyme concentration. The results showed that alcalase have more efficiency in the production of anti-oxidant peptides compared to the trypsin.

Keywords

Ahn, C.-B., Je, J.-Y., & Cho, Y.-S. (2012). Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 49(1), 92-98. doi:https://doi.org/10.1016/j.foodres.2012.08.002
Alashi, A. M., Blanchard, C. L., Mailer, R. J., Agboola, S. O., Mawson, A. J., He, R., . . . Aluko, R. E. (2014). Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry, 146, 500-506. doi:https://doi.org/10.1016/j.foodchem.2013.09.081
Amiri Andi, M., Motamedzadegan, A., & Hosseini-Parvar, S. H. (2016). Comparison of enzymatic and alkaline treatment on hydrolysis yield and properties of tomato seed protein. Journal of Food Research, 26(2), 333-343. (in Persian)
Amza, T., Balla, A., Tounkara, F., Man, L., & Zhou, H. (2013). Effect of hydrolysis time on nutritional, functional and antioxidant properties of protein hydrolysates prepared from gingerbread plum (Neocarya macrophylla) seeds. International Food Research Journal, 20(5), 2081.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114(4), 1198-1205. doi:https://doi.org/10.1016/j.foodchem.2008.10.075
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. doi:https://doi.org/10.1016/0003-2697(76)90527-3
Chanput, W., Theerakulkait, C., & Nakai, S. (2009). Antioxidative properties of partially purified barley hordein, rice bran protein fractions and their hydrolysates. Journal of Cereal Science, 49(3), 422-428. doi:https://doi.org/10.1016/j.jcs.2009.02.001
Chardigny, J.-M., & Walrand, S. (2016). Plant protein for food: opportunities and bottlenecks. OCL Oilseeds and fats crops and lipids, 23(4), 6 p. doi:https://doi.org/10.1051/ocl/2016019
Crépon, K., Marget, P., Peyronnet, C., Carrouée, B., Arese, P., & Duc, G. (2010). Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Research, 115(3), 329-339. doi:https://doi.org/10.1016/j.fcr.2009.09.016
Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant Activity of Proteins and Peptides. Critical Reviews in Food Science and Nutrition, 48(5), 430-441. doi:https://doi.org/10.1080/10408390701425615
Etemadi, M., Sadeghi Mahonak, A. R., Ghorbani, M., & Maghsoudlou, Y. (2015). Production and Evaluation of Chelating Activity and Reducing Power of Protein Hydrolysates Obtained from Soy Protein Isolate. Journal of Food Technology and Nutrition, 13(1), 65-74. (in Persian)
Fritz, M., Vecchi, B., Rinaldi, G., & Añón, M. C. (2011). Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chemistry, 126(3), 878-884. doi:https://doi.org/10.1016/j.foodchem.2010.11.065
Harris, M., Mora-Montes, H. M., Gow, N. A., & Coote, P. J. (2009). Loss of mannosylphosphate from Candida albicans cell wall proteins results in enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide via reduced peptide binding to the cell surface. Microbiology, 155(4), 1058-1070.
Himonides, A. T., Taylor, A. K., & Morris, A. J. (2011). A study of the enzymatic hydrolysis of fish frames using model systems. Food and Nutrition Sciences, 2(06), 575-585. doi:https://dx.doi.org/10.4236/fns.2011.26081
Hoyle, N. T., & Merrltt, J. H. (1994). Quality of Fish Protein Hydrolysates from Herring (Clupea harengus). Journal of Food Science, 59(1), 76-79. doi:https://doi.org/10.1111/j.1365-2621.1994.tb06901.x
Hrckova, M., Rusnakova, M., & Zemanovic, J. (2002). Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Czech journal of food sciences, 20(1), 7-14.
Iwaniak, A., & Minkiewicz, P. (2007). Proteins as the source of physiologically and functionally active peptides. Acta Scientiarum Polonorum Technologia Alimentaria, 6(3), 5-15.
Karamac, M., Amarowicz, R., & Kostyra, H. (2002). Effect of temperature and enzyme/substrate ratio on the hydrolysis of pea protein isolates by trypsin. Czech journal of food sciences, 20(1), 1-6.
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4), 1317-1327. doi:https://doi.org/10.1016/j.foodchem.2006.07.016
Kong, X., Zhou, H., & Qian, H. (2007). Enzymatic preparation and functional properties of wheat gluten hydrolysates. Food Chemistry, 101(2), 615-620. doi:https://doi.org/10.1016/j.foodchem.2006.01.057
Kristinsson, H. G., & Rasco, B. A. (2000). Biochemical and Functional Properties of Atlantic Salmon (Salmo salar) Muscle Proteins Hydrolyzed with Various Alkaline Proteases. Journal of Agricultural and Food Chemistry, 48(3), 657-666. doi:https://doi.org/10.1021/jf990447v
Li, X., Shen, S., Deng, J., Li, T., & Ding, C. (2014). Antioxidant activities and functional properties of tea seed protein hydrolysates (Camellia oleifera Abel.) influenced by the degree of enzymatic hydrolysis. Food Science and Biotechnology, 23(6), 2075-2082. doi:https://doi.org/10.1007/s10068-014-0282-2
Liu, Q., Kong, B., Xiong, Y. L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118(2), 403-410. doi:https://doi.org/10.1016/j.foodchem.2009.05.013
Makri, E. A., Papalamprou, E. M., & Doxastakis, G. I. (2006). Textural properties of legume protein isolate and polysaccharide gels. Journal of the Science of Food and Agriculture, 86(12), 1855-1862. doi:https://doi.org/10.1002/jsfa.2531
Marcuse, R. (1962). The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. Journal of the American Oil Chemists Society, 39(2), 97-103. doi:https://doi.org/10.1007/BF02631680
Muhamyankaka, V., Shoemaker, C., Nalwoga, M., & Zhang, X. (2013). Physicochemical properties of hydrolysates from enzymatic hydrolysis of pumpkin (Cucurbita moschata) protein meal. International Food Research Journal, 20(5), 2227.
Mullally, M. M., O'Callaghan, D. M., FitzGerald, R. J., Donnelly, W. J., & Dalton, J. P. (1994). Proteolytic and Peptidolytic Activities in Commercial Pancreatic Protease Preparations and Their Relationship to Some Whey Protein Hydrolyzate Characteristics. Journal of Agricultural and Food Chemistry, 42(12), 2973-2981. doi:https://doi.org/10.1021/jf00048a062
Nalinanon, S., Benjakul, S., Kishimura, H., & Shahidi, F. (2011). Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry, 124(4), 1354-1362. doi:https://doi.org/10.1016/j.foodchem.2010.07.089
Ng, K., & Khan, A. M. (2012). Enzymatic preparation of palm kernel expeller protein hydrolysate (PKEPH). International Food Research Journal, 19(2), 721.
Nourmohammadi, E., Sadeghi Mahoonak, A., Ghorbani, M., Alami, M., & Sadeghi, M. (2015). The optimization of the production of anti-oxidative peptides from enzymatic hydrolysis of Pumpkin seed protein. Iranian Food Science and Technokogy Research Journal, 13(1), 14-26. doi:https://doi.org/10.22067/ifstrj.v1395i0.45423 (in Persian)
Onuh, J. O., Girgih, A. T., Aluko, R. E., & Aliani, M. (2013). Inhibitions of renin and angiotensin converting enzyme activities by enzymatic chicken skin protein hydrolysates. Food Research International, 53(1), 260-267. doi:https://doi.org/10.1016/j.foodres.2013.05.010
Pazinatto, C., Malta, L. G., Pastore, G. M., & Maria Netto, F. (2013). Antioxidant capacity of amaranth products: effects of thermal and enzymatic treatments. Food Science and Technology, 33(3), 485-493.
Peñta-Ramos, E. A., & Xiong, Y. L. (2002). Antioxidant Activity of Soy Protein Hydrolysates in a Liposomal System. Journal of Food Science, 67(8), 2952-2956. doi:https://doi.org/10.1111/j.1365-2621.2002.tb08844.x
Polanco-Lugo, E., Dávila-Ortiz, G., Betancur-Ancona, D. A., & Chel-Guerrero, L. A. (2014). Effects of sequential enzymatic hydrolysis on structural, bioactive and functional properties of Phaseolus lunatus protein isolate. Food Science and Technology, 34(3), 441-448.
Shahidi, F., & Zhong, Y. (2008). Bioactive peptides. Journal of AOAC international, 91(4), 914-931.
Silva-Sánchez, C., de la Rosa, A. P. B., León-Galván, M. F., de Lumen, B. O., de León-Rodríguez, A., & de Mejía, E. G. (2008). Bioactive Peptides in Amaranth (Amaranthus hypochondriacus) Seed. Journal of Agricultural and Food Chemistry, 56(4), 1233-1240. doi:https://doi.org/10.1021/jf072911z
Sogi, D. S., Arora, M. S., Garg, S. K., & Bawa, A. S. (2002). Fractionation and electrophoresis of tomato waste seed proteins. Food Chemistry, 76(4), 449-454. doi:https://doi.org/10.1016/S0308-8146(01)00304-1
Taha, F. S., Mohamed, S. S., Wagdy, S. M., & Mohamed, G. F. (2013). Antioxidant and antimicrobial activities of enzymatic hydrolysis products from sunflower protein isolate. World Applied Science Journal, 21(5), 651-658.
Tatontos, M. I. (2015). Analysis on degree of hydrolysis and molecular weight of lotus seed protein isolate by alcalase enzyme. Retrieved from
Wu, H.-C., Chen, H.-M., & Shiau, C.-Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9), 949-957. doi:https://doi.org/10.1016/S0963-9969(03)00104-2
Zhang, H., Yu, L., Yang, Q., Sun, J., Bi, J., Liu, S., . . . Tang, L. (2012). Optimization of a microwave-coupled enzymatic digestion process to prepare peanut peptides. Molecules, 17(5), 5661-5674. doi:https://doi.org/10.3390/molecules17055661
Zhao, J., Huang, G., Zhang, M., Chen, W., & Jiang, J. (2011). Amino acid composition, molecular weight distribution and antioxidant stability of shrimp processing byproduct hydrolysate. Am J Food Technol, 6(10), 904-913.
CAPTCHA Image
Volume 9, Issue 1
May 2020
Pages 1-10
  • Receive Date: 10 April 2018
  • Revise Date: 26 August 2018
  • Accept Date: 12 September 2018