Using Arabic Gum, Maltodextrin and Inulin for Wall Compounds Microencapsulation and Rapid Release of the Bioactive Compounds from Cardamom Essential Oil in Saliva

Document Type : Original Paper

Authors

1 Associate Professor, Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran

2 PhD. Student, Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran

Abstract

In this study, the carbohydrates material include Arabic gum (0-100%), maltodextrin (0-50%) and inulin (0-50%) were used as wall compounds for the microencapsulation of cardamom essential oil. A simple-central mixture design was used to experiment design, to optimize and find the best combination for maximal release in the mouth media. The aim of this study was microencapsulation of cardamom oil active ingredients and the effect comparison of adding maltodextrin and inulin to Arabic gum as coating materials on the responses involve the microencapsulation yield, and release of active ingredients and recovery of powder. In this study, the relationship between glass transition temperature and the release of essential oils of cardamom essential oil was investigated in saliva. The results showed that the optimal combination of Arabic gum, maltodextrin and inulin with ratios of 66.8:33.2:0.0, respectively, under these conditions, the microencapsulation yield of the essential oil, alpha-triphenyl acetate and 1 and 8 cineol were 83.57, 91.79 and 90.87%, the release of the active ingredient was 93.27% and the powder recovery was 67.72%. The glass transition temperature of the optimal combination was 42.9 °C, which was a suitable temperature for preserving the active ingredients at ambient temperature and release in saliva. According to the results of this study, the cardamom essential oil optimal combination can be successfully applied in the products as chocolate, candy, sugar cubes, without the release of active ingredients at ambient temperature and with the rapid and high release in the mouth media.

Keywords

Afagh Hayedeh, V. (2005). Spicy herbs (Vol. First turn): Shaghayegh Institute of Tehran Village. (in Persian)
Anarjan, N., Fahimdanesh, M., & Jafarizadeh-Malmiri, H. (2017). β-Carotene nanodispersions synthesis by three-component stabilizer system using mixture design. Journal of food science and technology, 54(11), 3731-3736. doi:https://doi.org/10.1007/s13197-017-2764-8
Apintanapong, M., & Noomhorm, A. (2003). The use of spray drying to microencapsulate 2‐acetyl‐1‐pyrroline, a major flavour component of aromatic rice. International journal of food science & technology, 38(2), 95-102. doi:https://doi.org/10.1046/j.1365-2621.2003.00649.x
Asprea, M., Leto, I., Bergonzi, M. C. & Bilia, A. R. (2017). Thyme essential oil loaded in nanocochleates: Encapsulation efficiency, in vitro release study and antioxidant activity. LWT-Food Science and Technology, 77, 497-502. doi:https://doi.org/10.1016/j.lwt.2016.12.006
Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2011). Black currant polyphenols: Their storage stability and microencapsulation. Industrial crops and products, 34(2), 1301-1309. doi:https://doi.org/10.1016/j.indcrop.2010.10.002
Beristain, C., Azuara, E., & Vernon‐Carter, E. (2002). Effect of water activity on the stability to oxidation of spray‐dried encapsulated orange peel oil using mesquite gum (Prosopis juliflora) as wall material. Journal of Food Science, 67(1), 206-211. doi:https://doi.org/10.1111/j.1365-2621.2002.tb11385.x
Bhandari, B. R., Datta, N., & Howes, T. (1997). Problems Associated With Spray Drying Of Sugar-Rich Foods. Drying Technology, 15(2), 671-684. doi:https://doi.org/10.1080/07373939708917253
Bhandari, B. R., Dumoulin, E. D., Richard, H. M. J., Noleau, I., & Lebert, A. M. (1992). Flavor Encapsulation by Spray Drying: Application to Citral andLinalyl Acetate. Journal of Food Science, 57(1), 217-221. doi:https://doi.org/10.1111/j.1365-2621.1992.tb05459.x
Bhandari, B. R., & Hartel, R. W. (2005). Phase transitions during food powder production and powder stability Encapsulated and powdered foods (pp. 273-304): CRC Press.
Biliaderis, C., Lazaridou, A., & Arvanitoyannis, I. (1999). Glass transition and physical properties of polyol-plasticised pullulan–starch blends at low moisture. Carbohydrate polymers, 40(1), 29-47. doi:https://doi.org/10.1016/S0144-8617(99)00026-0
Chiu, C., & Moss, C. F. (2007). The role of the external ear in vertical sound localization in the free flying bat, Eptesicus fuscus. The Journal of the Acoustical Society of America, 121(4). doi:https://doi.org/10.1121/1.2434760
de Barros Fernandes, R. V., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L., . . . Botrel, D. A. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial crops and products, 94, 413-423. doi:https://doi.org/10.1016/j.indcrop.2016.09.010
Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food hydrocolloids, 17(1), 25-39. doi:https://doi.org/10.1016/S0268-005X(01)00120-5
F. Gibbs, S. K., Inteaz Alli, Catherine N. Mulligan, Bernard. (1999). Encapsulation in the food industry: a review. International journal of food sciences and nutrition, 50(3), 213-224.
Fernandes, R. V. d. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate polymers, 101, 524-532. doi:https://doi.org/10.1016/j.carbpol.2013.09.083
Fernandes, R. V. d. B., Borges, S. V., Silva, E. K., da Silva, Y. F., de Souza, H. J. B., do Carmo, E. L., . . . Botrel, D. A. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray drying. Industrial crops and products, 94, 413-423. doi:https://doi.org/10.1016/j.indcrop.2016.09.010
Frascareli, E., Silva, V., Tonon, R., & Hubinger, M. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and bioproducts processing, 90(3), 413-424. doi:https://doi.org/10.1016/j.fbp.2011.12.002
Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107-1121. doi:https://doi.org/10.1016/j.foodres.2007.07.004
Goubet, I., Le Quere, J.-L., & Voilley, A. (1998). Retention of aroma compounds by carbohydrates: influence of their physicochemical characteristics and of their physical state. A review. Journal of agricultural and food chemistry, 46(5), 1981-1990.doi:https://doi.org/10.1021/jf970709y
Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in food science & technology, 15(7-8), 330-347. doi:https://doi.org/10.1016/j.tifs.2003.10.005
Imagi, J., Muraya, K., Yamashita, D., Adachi, S., & Matsuno, R. (1992). Retarded oxidation of liquid lipids entrapped in matrixes of saccharides or proteins. Bioscience, biotechnology, and biochemistry, 56(8), 1236-1240. doi:https://doi.org/10.1271/bbb.56.1236
Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Drying Technology, 26(7), 816-835. doi:https://doi.org/10.1080/07373930802135972
Jafari, S. M., He, Y., & Bhandari, B. (2007). Effectiveness of encapsulating biopolymers to produce sub-micron emulsions by high energy emulsification techniques. Food Research International, 40, 862-873. doi:https://doi.org/10.1016/j.foodres.2007.02.002
Krishnan, S., Bhosale, R., & Singhal, R. S. (2005). Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydrate polymers, 61(1), 95-102. doi:https://doi.org/10.1016/j.carbpol.2005.02.020
Kubo, I., Himejima, M., & Muroi, H. (1991). Antimicrobial activity of flavor components of cardamom Elettaria cardamomum (Zingiberaceae) seed. Journal of agricultural and food chemistry, 39(11), 1984-1986. doi:https://doi.org/10.1021/jf00011a020
Lee, D., Hwang, S., Park, J., & Park, H. (2003). Preparation and release characteristics of polymer-coated and blended alginate microspheres. Journal of Microencapsulation, 20(2), 179-192. doi:https://doi.org/10.3109/02652040309178060
Lee, K. Y., Park, W. H., & Ha, W. S. (1997). Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for microcapsules. Journal of Applied Polymer Science, 63(4), 425-432. doi:https://doi.org/10.1002/(SICI)1097-4628(19970124)63:43.0.CO;2-T
Minemoto, Y., Adachi, S., & Matsuno, R. (1999). Autoxidation of linoleic acid encapsulated with polysaccharides of differing weight ratio. Bioscience, biotechnology, and biochemistry, 63(5), 866-869. doi:https://doi.org/10.1271/bbb.63.866
Mohammadi, N., Ehsani, M. R., & Bakhoda, H. (2018). Design and Evaluation of the Release Characteristics of Caffeine-Loaded Microcapsules in a Medicated Chewing Gum Formulation. Food Biophysics, 13(3), 240-249. doi:https://doi.org/10.1007/s11483-018-9530-y
Najafi Najaf, M., Mortazavi, S. A., Koocheki, A., Khorami, J., & Rekik, B. (2009). Fat and protein contents, acidity and somatic cell counts in bulk milk of Holstein cows in the Khorasan Razavi Province, Iran. International Journal of Dairy Technology, 62(1), 19-26. doi:https://doi.org/10.1111/j.1471-0307.2008.00451.x
Nunes, R. S., & Cavalheiro, É. T. G. (2007). Thermalbehavior of glutamic acid and its sodium, lithium and ammonium salts. Journal of Thermal Analysis and Calorimetry, 87(3), 627-630. doi:https://doi.org/10.1007/s10973-006-7788-7
Overbosch, P., Afterof, W., & Haring, P. (1991). Flavor release in the mouth. Food reviews international, 7(2), 137-184. doi:https://doi.org/10.1080/87559129109540906
Papadakis, S. E., Gardeli, C., & Tzia, C. (2006). Spray drying of raisin juice concentrate. Drying Technology, 24(2), 173-180. doi:https://doi.org/10.1080/07373930600559019
Patel, R., Patel, M., & Suthar, A. (2009). Spray drying technology: an overview. Indian Journal of Science and Technology, 2(10), 44-47.
Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification, 46(5), 386-392. doi:https://doi.org/10.1016/j.cep.2006.06.020
Reineccius, G. A. (1995). Controlled release techniques in the food industry: ACS Publications.
Robert, P., García, P., Reyes, N., Chávez, J., & Santos, J. (2012). Acetylated starch and inulin as encapsulating agents of gallic acid and their release behaviour in a hydrophilic system. Food chemistry, 134(1), 1-8doi:https://doi.org/10.1016/j.foodchem.2012.02.019
Rosenberg, M., Kopelman, I., & Talmon, Y. (1990). Factors affecting retention in spray-drying microencapsulation of volatile materials. Journal of agricultural and food chemistry, 38(5), 1288-1294. doi:https://doi.org/10.1021/jf00095a030
Shahidi, F., & Han, X. Q. (1993). Encapsulation of food ingredients. Critical Reviews in Food Science & Nutrition, 33(6), 501-547. doi:https://doi.org/10.1080/10408399309527645
Shariat Hadi, S. (1990). Analysis and identification of herbal medicines (Vol. First Edition): Isfahan Mashal Publishing Institute. (in Persian)
Shiga, H., Yoshii, H., Nishiyama, T., Furuta, T., Forssele, P., Poutanen, K., & Linko, P. (2001). Flavor encapsulation and release characteristics of spray-dried powder by the blended encapsulant of cyclodextrin and gum arabic. Drying Technology, 19(7), 1385-1395. doi:https://doi.org/10.1081/DRT-100105295
Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2003). Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. Journal of Food Science, 68(7), 2256-2262. doi:https://doi.org/10.1111/j.1365-2621.2003.tb05756.x
Truong, V., Bhandari, B. R., & Howes, T. (2005). Optimization of co-current spray drying process of sugar-rich foods. Part I—Moisture and glass transition temperature profile during drying. Journal of Food Engineering, 71(1), 55-65. doi:https://doi.org/10.1016/j.jfoodeng.2004.10.017
Yoshii, H., Furuta*, T., Kawasaki, K., Hirano, H., Funatsu, Y., Toyomi, A., & Nakayama*, S. (1997). Oxidative stability of powdery tridocosahexaenoin included in cyclodextrin and its application to fish meal paste. Bioscience, biotechnology, and biochemistry, 61(8), 1376-1378. doi:https://doi.org/10.1271/bbb.61.1376
Yousefi, S., Emam-Djomeh, Z., & Mousavi, S. M. (2011). Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). Journal of food science and technology, 48(6), 677-684.doi:https://doi.org/10.1007/s13197-010-0195-x
Zandi, M., Mohebbi, M., Varidi, M., & Ramezanian, N. (2014). Evaluation of diacetyl encapsulated alginate–whey protein microspheres release kinetics and mechanism at simulated mouth conditions. Food Research International, 56, 211-217. doi:https://doi.org/10.1016/j.foodres.2013.11.035
CAPTCHA Image
Volume 9, Issue 1
May 2020
Pages 57-72
  • Receive Date: 13 May 2019
  • Revise Date: 16 July 2019
  • Accept Date: 22 September 2019