The Optimization of Solvent Extraction Process from Salvia Leriifolia Leaf Extract Containing Antimicrobial Compounds Using Response Surface Methodology (RSM)

Document Type : Original Paper

Authors

1 Associate Professor, Department of Food Biotechnology, Research Institute of Food Science and Technology, Mashhad, Iran

2 PhD. Student, Department of Food Processing, Research Institute of Food Science and Technology, Mashhad, Iran

3 Assistant Professor, Department of Biology, Faculty of Basic Science, Farhangian University, Mashhad, Iran

Abstract

In this research, determining the optimal conditions for extraction of Salvia leriifolia leaf by traditional solvent extraction method (with different solvent ratio of water/ethanol 50:50, 60:40 and 70:30 at temperatures of 70, 80 and 90 ºC and time duration of 30, 75 and 120 min) in order to investigate the antimicrobial activity of the extract, using response surface method was carried out. The  analysis of variances showed that the effect of all three independent variables on the dependent variables (the diameter of the inhibition zone of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella enteritidis, Saccharomyces cerevisiae and Aspergillus niger) was significant (p < /em><0.05). Optimum extraction conditions including temperature of 83.60 ºC, extraction time of 60.92 min and water to ethanol ratio of 59.09 were obtained. Regarding the diameter of the inhibition zone of microorganisms, the highest inhibition zone belonged to Saccharomyces cerevisiae and Staphylococcus aureus.The optimization of extraction method resulted in extracts with the highest antimicrobial activity, especially against yeast and Gram-positive bacteria. In addition, predicting evaluation models provided an effective step in selecting extraction conditions to achieve a combination of antimicrobial properties against each microbial group.

Keywords

Adámez, J. D., Samino, E. G., Sánchez, E. V., & González-Gómez, D. (2012). In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control, 24(1-2), 136-141. doi:https://doi.org/10.1016/j.foodcont.2011.09.016
Baghi, N. (1996). Investigation of antimicrobial effects of Salvia leriifolia. (Unpublished doctoral dissertation), Faculty of Pharmacy, Mashhad University of Medical Sciences, (in Persian)
Chan, C.-H., Yusoff, R., & Ngoh, G.-C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical engineering research and design, 92(6), 1169-1186. doi:https://doi.org/10.1016/j.cherd.2013.10.001
Corrales, M., García, A. F., Butz, P., & Tauscher, B. (2009). Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90(4), 415-421. doi:https://doi.org/10.1016/j.jfoodeng.2008.07.003
Duffy, C. F., & Power, R. F. (2001). Antioxidant and antimicrobial properties of some Chinese plant extracts. International journal of antimicrobial agents, 17(6), 527-529.
Endo, E. H., Cortez, D. A. G., Ueda-Nakamura, T., Nakamura, C. V., & Dias Filho, B. P. (2010). Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Research in Microbiology, 161(7), 534-540. doi:https://doi.org/10.1016/j.resmic.2010.05.002
Fernandes, F. H., Santana, C. P., Santos, R. L., Correia, L. P., Conceição, M. M., Macêdo, R. O., & Medeiros, A. C. D. (2013). Thermal characterization of dried extract of medicinal plant by DSC and analytical techniques. Journal of thermal analysis and calorimetry, 113(2), 443-447. doi:https://doi.org/10.1007/s10973-012-2807-3
Furneri, P. M., Marino, A., Saija, A., Uccella, N., & Bisignano, G. (2002). In vitro antimycoplasmal activity of oleuropein. International journal of antimicrobial agents, 20(4), 293-296. doi:https://doi.org/10.1016/S0924-8579(02)00181-4
Ghahreman, A. (1994). Iranian chromophytes (plant systematic) (Vol. 3): Institute for University Publishing. (in Persian)
Ghasemi, E., Golshahi, H., & Mehranzadeh, A. (2011, September ). Antimicrobial effect of alcoholic extract of basil (Ocimum basilicum) on Escherichia coli, Staphylococcus aureus and Bacillus subtilis. Paper presented at the 1st International Congress of Medical Bacteriology, Tabriz University of Medical Sciences and Health Services. (in Persian)
Habibi, Z., & Roostaeian, A. . (1999, February). Chemical investigation of Salvia lerifolia. Paper presented at the Proceedings of the 13th Iranian Congress of Chemistry and Chemical Engineering - Organic Chemistry, Tarbiat Modares University, Tehran. (in Persian)
Hayrapetyan, H., Hazeleger, W. C., & Beumer, R. R. (2012). Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food Control, 23(1), 66-72. doi:https://doi.org/10.1016/j.foodcont.2011.06.012
Heywood, V. H., Moore, D., Richardson, I., & Stearn, W. T. (1993). Flowering plants of the world: Oxford University Press.
Hosseinzadeh, H., & Lary, P. (2000). Effect of Salvia leriifolia leaf extract on morphine dependence in mice. Phytotherapy Research, 14(5), 384-387. doi:https://doi.org/10.1002/1099-1573(200008)14:53.0.CO;2-F
Iranian National Standardization Organization [ISIRI]. (2010). Cereal and cereal products- Determination of moisture content ñ Reference method. (ISIRI Standard No. 2705, 1st.Revision). Retrieved from http://standard.isiri.gov.ir/StandardView.aspx?Id=46619 (in Persian)
Iranian National Standardization Organization [ISIRI]. (2016). Determination of Sugar Moisture by Loss on Drying. (ISIRI Standard No. 5194, 1st.Revision). Retrieved from http://standard.isiri.gov.ir/StandardView.aspx?Id=42747 (in Persian)
Ismail, T., Sestili, P., & Akhtar, S. (2012). Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. Journal of ethnopharmacology, 143(2), 397-405. doi:https://doi.org/10.1016/j.jep.2012.07.004
Iturriaga, L., Olabarrieta, I., & de Marañón, I. M. (2012). Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. International journal of food microbiology, 158(1), 58-64. doi:https://doi.org/10.1016/j.ijfoodmicro.2012.07.001
Jabarzadeh, M. (1999). Investigation of Antimicrobial Properties of Root Extract of Salvia L. (Unpublished doctoral dissertation), Faculty of Pharmacy, Mashhad University of Medical Sciences, (in Persian)
Martin, J. G. P., Porto, E., Corrêa, C. B., Alencar, S., Gloria, E., Cabral, I., & Aquino, L. (2012). Antimicrobial potential and chemical composition of agro-industrial wastes. J. Nat. Prod, 5, 27-36.
Mehraban, A., Edalatian Dovom, M. R., Haddad Khodaparast, M. H., & Mehraban Sang Atash, M. (2017). Study of Antibacterial Effect of Aqueous, Ethanolic and Hydroalcoholic Extracts of Aerial Organs of Salvia chorassanica against Some Spoilage and Poisoning Bacteria. Food Science and Technology, 14(66), 227-217. (in Persian)
Miski, M., Ulubelen, A., Johansson, C., & Mabry, T. J. (1983). Antibacterial activity studies of flavonoids from Salvia palaestina. Journal of Natural Products, 46(6), 874-875. doi:https://doi.org/10.1021/np50030a007
Modarres, M., & Abrisham Chi, P. (2010). The effect of harvesting time on the antibacterial activity of Salvia leriifolia benth. leaf extract. Journal of Science Kharazmi University, 8(4), 343-356. (in Persian)
Modarres, M., & Abrishamchi, P. (2011). Antibacterial activity of Salvia leriifolia Benth. root extract in different stages of growth and development. Iranian Journal of Biology, 23(5), 707-717. (in Persian)
Modarres, M., Asili, J., Lahouti, M., Gangali, A., Iranshahy, M., & Sahebkar, A. (2014). Simultaneous determination of rosmarinic acid, salvianolic acid B and caffeic acid in Salvia leriifolia Benth. root, leaf and callus extracts using a high-performance liquid chromatography with diode-array detection technique. Journal of Liquid Chromatography & Related Technologies, 37(12), 1721-1730. doi:https://doi.org/10.1080/10826076.2013.807466
Perumalla, A., & Hettiarachchy, N. S. (2011). Green tea and grape seed extracts—Potential applications in food safety and quality. Food Research International, 44(4), 827-839. doi:https://doi.org/10.1016/j.foodres.2011.01.022
Qu, W., Li, P., Hong, J., Liu, Z., Chen, Y., Breksa III, A. P., & Pan, Z. (2014). Thermal stability of liquid antioxidative extracts from pomegranate peel. Journal of the Science of Food and Agriculture, 94(5), 1005-1012. doi:https://doi.org/10.1002/jsfa.6361
Rechinger, K. H. (1982). Flora iranica. Graz-Austria: Akademic Druck-u Verlagsanstalt, 150, 292-313.
Sagdic, O., Ozturk, I., & Kisi, O. (2012). Modeling antimicrobial effect of different grape pomace and extracts on S. aureus and E. coli in vegetable soup using artificial neural network and fuzzy logic system. Expert Systems with Applications, 39(8), 6792-6798. doi:https://doi.org/10.1016/j.eswa.2011.12.047
Silván, J. M., Mingo, E., Hidalgo, M., de Pascual-Teresa, S., Carrascosa, A. V., & Martinez-Rodriguez, A. J. (2013). Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food Control, 29(1), 25-31. doi:https://doi.org/10.1016/j.foodcont.2012.05.063
Tabatabai Yazdi, F. (1995). Antioxidant effect of essential oil and leaf extract of Salvia L. and its phytochemical identification. (Unpublished mastre's thesis), Ferdowsi University of Mashhad, (in Persian)
Wang, Y.-S., He, H.-P., Yang, J.-H., Di, Y.-T., & Hao, X.-J. (2008). New monoterpenoid coumarins from Clausena anisum-olens. Molecules, 13(4), 931-937. doi:https://doi.org/10.3390/molecules13040931
Yousefli, M., Hosseini, Z., Haddad Khodaparast, M. H., Azarnivand, H., & Pezeshki, P. (2011). Antimicrobial effect of Salvia leriifolia leaf extract powder against the growth of Staphylococcus aureus in hamburger. Iranian Journal of Food Science and Technology, 8(29), 126-136. (in Persian)
CAPTCHA Image
Volume 9, Issue 2
July 2020
Pages 113-126
  • Receive Date: 13 May 2019
  • Revise Date: 15 October 2019
  • Accept Date: 09 November 2019