Kinetics investigation of thin layer plums drying simultaneously pretreated with ultrasound and osmotic dehydration

Document Type : Original Paper

Authors

1 MSc. Graduated Student, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

2 Associated Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

3 Associated Professor, Department of Agricultural Machinery, Faculty of Agriculture, University of Tabriz

4 Professor, Department of Agricultural Machinery, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

Abstract

Ultrasound is one of the emerging technologies that its application in drying foodstuffs aimed at reducing the time needed to process and improve the quality characteristics of dried product is growing day by day. In this study, the simultaneous effect of ultrasound and osmotic dehydration pretreatments on thin-layer drying kinetics of plums during drying at 80°C temperature and 1.4 m/s air velocity was examined. The pretreatments applied included ultrasound waves at two levels (10 and 30 minutes), osmotic solution concentrations at two levels (50 and 70 Brix) and osmotic dehydration time at four levels (60, 120, 180 and 240 min). The results showed that increasing ultrasound time, osmotic solution concentration and osmotic process time led to a decrease in drying time and an increase in effective moisture diffusion coefficient compared to control sample. Furthermore, in order to correctly predict the drying process, the data from the experiments were fitted with some empirical models as well as some new proposed models in this study. Then, one of the proposed models was selected as the best model (based on Coefficient of Determination, Root Mean Square Error and Sum of Square Error) to describe the drying process of plums under the selected experimental conditions. Through multiple regression analysis, the relations between the coefficients of the models with the variables used were obtained.

Keywords

قربانی، ر.، دهقان‌نیا، ج.، سیدلو هریس، س. ص.، قنبرزاده، ب. 1392آ. مدل‌سازی چروکیدگی آلوی پیش‌تیمار شده با اولتراسوند و آبگیری اسمزی در فرآیند خشک‌کردن. نشریه علمی- پژوهشی مکانیزاسیون کشاورزی، 1(1):24 - 11.
قربانی، ر.، دهقان‌نیا، ج.، سیدلو هریس، س. ص.، قنبرزاده، ب. 1392ب. مدل‌سازی دانسیته ظاهری در طی خشک‌‌کردن آلوی پیش‌تیمار شده با اولتراسوند و آبگیری اسمزی. مجله علمی- پژوهشی علوم و فناوری‌های نوین غذایی، 1(2): 38 - 23.
Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. 2012. Applications of ultrasound in analysis, processing and quality control of food:  review. Food Research International, 48 (2): 410-427.
Barbosa-Canovas, G. V. & Vega-Mercado, H. 1996. Dehydration of Foods. New York: Chapman and Hall.
Chemat, F., Zill-e-Huma & Khan, M. K. 2011. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18: 813-835.
Chua, K. J., Chou, S. K., Hawlader, M. N. S., Mujumdar, A. S. & Ho, J. C. 2002. Modeling the moisture and temperature distribution within an agricultural product undergoing time-varying drying schems. Biosystems Engineering, 81: 99-111.
Cletus, A. B. & Carson, J. K. 2008. Drying curves and apparent diffusivity of New Zealand chestnut variety ‘1015’. Journal of Food Engineering, 85: 381-386.
Dehghannya, J., Emam-Djomeh, Z., Sotudeh-Gharebagh, R. & Ngadi, M. 2006. Osmotic dehydration of apple slices with carboxy-methyl cellulose coating. Drying Technology, 24: 45-50.
Deng, Y. & Zhao, Y. 2008. Effect of pulsed vacuum and ultrasound osmo pretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT - Food Science and Technology, 41: 1575-1585.
Doymaz, I. 2004. Effect of dipping treatment on air drying of plums. Journal of Food Engineering, 64: 465–470.
Fernandes, F. A. N., Gallao M. I. & Rodrigues, S. 2008. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT-Food Science and Technology, 41: 604-610.
Fernandes, F. A. N. & Rodrigues S. 2007. Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82: 261-267.
Fuente-Blanco, S. D. L., Sarabia, E. R.-F. D., Acosta-Aparicio, V. M., Blanco-Blanco, A. & Gallego-Juarez, J. A. 2006. Food drying process by power ultrasound. Ultrasonics, 44: e523-e527.
Giner, S. A. 2009. Influence of Internal and External Resistances to Mass Transfer on the constant drying rate period in high-moisture foods. Biosystems Engineering, 102 (1): 90-94.
Guine, R. P. F. & Fernandes, R. M. C. 2006. Analysis of the drying kinetics of chestnut. Journal of Food Engineering, 76: 460-467.
Ibitwar, B. B., Kaur, B., Arora, S. & Pathare, P. B. 2008. Osmo-convective dehydration of plum. International Journal of Food Engineering, 4 (8): Article 5.
Ioannou, I., Guiga, W., Charbonnel, C. & Ghoul M. 2011. Frozen mirabelle plum drying: Kinetics, modelling and impact on biochemical properties. Food and Bioproducts Processing, 89: 438-448.
Jambrak, A. R., Mason, T. J., Paniwnyk, L. & Lelas, V. 2007. Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81: 88-97.
Jazini, M. H. & Hatamipour, M. S. 2010. A new physical pretreatment of plum for drying. Food and Bioproducts processing, 88: 133-137.
Menges, H. O. & Ertekin, C. 2006. Thin layer drying model for treated and untreated Stanley plums. Energy Conversion and Management, 47: 2337-2348.
Monnerat, S. M., Pizzi, T. R. M., Mauro, M. A. & Menegalli, F. C. 2010. Osmotic dehydration of apples in sugar/salt solutions: Concentration profiles and effective diffusion coefficients. Journal of Food Engineering, 100: 604-612.
Nunes, C., Saraiva, J. A. & Coimbra, M. A. 2008. Effect of candying on cell wall polysaccharides of plums (Prunus domestica L.) and influence of cell wall enzymes. Food Chemistry, 111: 538-548.
Ortuno, C., Perez-Munuera, I., Puig, A. & Riera, E. 2010. Influence of power ultrasound application on mass transport microstructure of orange peel during hot air drying. Physics Procedia, 3: 153-159.
Prinzivalli, C., Brambilla, A., Maffi, D., Scalzo, R. L. & Torreggiani, D. 2006. Effect of osmosis time on structure, texture and pectic composition of strawberry tissue. European Food Research and Technology, 224: 119-127.
Sacilik, K., Elicin, A. K. & Unal, G. 2006. Drying kinetics of Uryani plum in a convective hot-air dryer. Journal of Food Engineering, 76: 362-368.
Schossler, K., Jager, H. & Knorr, D. 2012. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108: 103-110.
Seiiedlou, S., Ghasemzadeh, H. R., Hamdami, N., Alati, F. T. & Moghaddam, M. 2010. Convective drying of apple: mathematical modeling and determination of some quality parameters. International Journal of Agriculture and Biology, 12: 171-178.
Soria, A. C. & Villamiel, M. 2010. Effect of ultrasound on the technological properties and bioactivity of food: a review. Food Science and Technology, 21: 323-331.
Steel, R. G. D., Torrie, J. H. & Dickey, D. A. 1997. Principles and procedures of statistics: a biometrical approach. New York: McGraw-Hill
Tarhan, S. 2007. Selection of chemical and thermal pretreatment combination for plum drying at low and moderate drying temperatures. Journal of Food Engineering, 79: 255-260.
Togrul, I. T. & Pehlivan, D. 2004. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65: 413-425.
CAPTCHA Image
Volume 4, Issue 1
May 2015
Pages 35-52
  • Receive Date: 23 November 2013
  • Revise Date: 30 January 2015
  • Accept Date: 07 February 2015