Kinetic modelling of Okra and Gracilaria corticata hydrocolloid mucilage polysaccharides

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 Department of Biotechnology, PSGR Krishnammal College for Women, Coimbatore, India

2 Department of Zoology, PSGR Krishnammal College for Women, Coimbatore, India

3 Department of Food Processing Technology and Management, PSGR Krishnammal College for Women, Coimbatore, India

چکیده

The biopolymer has become essential component in the recent years to overcome the environmental issues raised from the synthetic polymer. In this aspect we attempt to make such valuable and economical important biopolymer from the natural sources such as Abelmoscus esculentus and Gracilaria corticata in an eco-friendly approach with thermally stable biopolymer. Thermal analysis of Okra and Gracilaria corticata mucilage polysaccharide has been carried out to ascertain their thermal degradation behavior and thermal stability. Thermal analysis of Okra and Gracilaria corticata mucilage polysaccharide weighed in the range of 5-10 mg was carried out with TGA (thermal gravimetric analyzer) and DSC (differential scanning calorimeter). Activation energy of the biopolymers for degradation studies was predicted and compared with Flynn-Wall-Ozawa (FWO) model. The activation energy obtained showed high R2 value of 0.9999, 0.9951, 0.9997 for Okra and 0.9992, 0.9998, 0.9999 for Gracilaria corticata, respectively. The obtained results of this study established the thermal characteristics of Okra and Gracilaria corticata mucilage polysaccharide and suggest their potential application in the food, cosmetic and pharmaceutical sectors.

کلیدواژه‌ها

موضوعات

© 2024, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Akbar, J., Iqbal, M. S., Massey, S., & Masih, R. (2012). Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers. Carbohydrate Polymers, 90(3), 1386-1393. https://doi.org/10.1016/j.carbpol.2012.07.008
Barbosa, J. R., S. Freitas, M. M., Oliveira, L. C., S. Martins, L. H., Almada-Vilhena, A. O., Oliveira, R. M., . . . Carvalho Junior, R. N. (2020). Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2. Food Chemistry, 330, 127173. https://doi.org/10.1016/j.foodchem.2020.127173
Ben Slima, S., Ktari, N., chouikhi, A., Trabelsi, I., Hzami, A., Taktak, M. A., . . . Ben Salah, R. (2022). Antioxidant activities, functional properties, and application of a novel Lepidium sativum polysaccharide in the formulation of cake. Food Science & Nutrition, 10(3), 822-832. https://doi.org/10.1002/fsn3.2713
Cruz, G., Santiago, P. A., Braz, C. E. M., Seleghim, P., & Crnkovic, P. M. (2018). Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse. Journal of Thermal Analysis and Calorimetry, 132(2), 1039-1053. https://doi.org/10.1007/s10973-018-7041-1
Distantina, S., & Fahrurrozi, M. (2011). Carrageenan properties extracted from Eucheuma cottonii, Indonesia. International Journal of Chemical and Molecular Engineering, 5(6), 501-505. https://doi.org/10.5281/zenodo.1333328
Drechsler, K. C., & Bornhorst, G. M. (2018). Modeling the softening of carbohydrate-based foods during simulated gastric digestion. Journal of Food Engineering, 222, 38-48. https://doi.org/10.1016/j.jfoodeng.2017.11.007
Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. https://doi.org/10.1002/pol.1966.110040504
Garre, A., Zwietering, M. H., & den Besten, H. M. W. (2020). Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept. Food Research International, 137, 109374. https://doi.org/10.1016/j.foodres.2020.109374
Halabi, A., Deglaire, A., Hamon, P., Bouhallab, S., Dupont, D., & Croguennec, T. (2020). Kinetics of heat-induced denaturation of proteins in model infant milk formulas as a function of whey protein composition. Food Chem, 302, 125296. https://doi.org/10.1016/j.foodchem.2019.125296
Hansen, M. M., Maidannyk, V. A., & Roos, Y. H. (2020). Thermal gelation and hardening of whey protein beads for subsequent dehydration and encapsulation using vitrifying sugars. Journal of Food Engineering, 279, 109966. https://doi.org/10.1016/j.jfoodeng.2020.109966
Hickman, D. A., Ignatowich, M. J., Caracotsios, M., Sheehan, J. D., & D'Ottaviano, F. (2019). Nonlinear mixed-effects models for kinetic parameter estimation with batch reactor data. Chemical Engineering Journal, 377, 119817. https://doi.org/10.1016/j.cej.2018.08.203
Jha, P. K., Xanthakis, E., Chevallier, S., Jury, V., & Le-Bail, A. (2019). Assessment of freeze damage in fruits and vegetables. Food Research International, 121, 479-496. https://doi.org/10.1016/j.foodres.2018.12.002
Ji, X., Zhang, F., Zhang, R., Liu, F., Peng, Q., & Wang, M. (2019). An acidic polysaccharide from Ziziphus Jujuba cv. Muzao: Purification and structural characterization. Food Chemistry, 274, 494-499. https://doi.org/10.1016/j.foodchem.2018.09.037
Kasperowicz, M. B., Chomka, G. P., & Bil, T. (2020). Determination of Supply Pressure during Cutting Fish Using High-Pressure Water Stream Taking into Account the Cutting Place and Diameter of the Water Nozzle. International Journal of Food Engineering, 16(3). https://doi.org/10.1515/ijfe-2018-0395
Li, Q., Wu, Q. Y., Jiang, W., Qian, J. Y., Zhang, L., Wu, M., . . . Wu, C. S. (2019). Effect of pulsed electric field on structural properties and digestibility of starches with different crystalline type in solid state. Carbohydr Polym, 207, 362-370. https://doi.org/10.1016/j.carbpol.2018.12.001
Li, Z., & Lin, Z. (2021). Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate, 2(2), e21. https://doi.org/10.1002/agt2.21
Liu, Y., Yang, L., Ma, C., & Zhang, Y. (2019). Thermal Behavior of Sweet Potato Starch by Non-Isothermal Thermogravimetric Analysis. Materials (Basel), 12(5). https://doi.org/10.3390/ma12050699
Madoumier, M., Trystram, G., Sébastian, P., & Collignan, A. (2019). Towards a holistic approach for multi-objective optimization of food processes: A critical review. Trends in Food Science & Technology, 86, 1-15. https://doi.org/10.1016/j.tifs.2019.02.002
Merci, A., Mali, S., & Carvalho, G. M. d. (2019). Waxy maize, corn and cassava starch: Thermal degradation kinetics. Semina: Ciências Exatas e Tecnológicas, 40(1), 13-22. https://doi.org/10.5433/1679-0375.2019v40n1p13
Mohammed, J. K., Mahdi, A. A., Ahmed, M. I., Ma, M., & Wang, H. (2020). Preparation, deproteinization, characterization, and antioxidant activity of polysaccharide from Medemia argun fruit. International Journal of Biological Macromolecules, 155, 919-926. https://doi.org/10.1016/j.ijbiomac.2019.11.050
Nawaz, A., Xiong, Z., Li, Q., Xiong, H., Irshad, S., Chen, L., . . . Regenstein, J. M. (2019). Evaluation of physicochemical, textural and sensory quality characteristics of red fish meat-based fried snacks. J Sci Food Agric, 99(13), 5771-5777. https://doi.org/10.1002/jsfa.9845
Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886.
Plazanet, I., Zerrouki, R., Montplaisir, D., Gady, C., Boens, B., & Costa, G. (2018). Effect of ionic liquids on dissolution and identification of wood polysaccharides. Ann Glycomics Lipidomics AGL, 101. https://doi.org/10.29011/AGL-101/100001
Ren, Y., Wu, Z., Shen, M., Rong, L., Liu, W., Xiao, W., & Xie, J. (2021). Improve properties of sweet potato starch film using dual effects: Combination Mesona chinensis Benth polysaccharide and sodium carbonate. LWT, 140, 110679. https://doi.org/10.1016/j.lwt.2020.110679
Schuldt, S., Schneider, Y., & Rohm, H. (2018). High-speed cutting of foods: Cutting behavior and initial cutting forces. Journal of Food Engineering, 230, 55-62. https://doi.org/10.1016/j.jfoodeng.2018.02.024
Shah, M. A., Khan, M. N. S., & Kumar, V. (2018). Biomass residue characterization for their potential application as biofuels. Journal of Thermal Analysis and Calorimetry, 134(3), 2137-2145. https://doi.org/10.1007/s10973-018-7560-9
Simpson, R., Jiménez, D., Almonacid, S., Nuñez, H., Pinto, M., Ramírez, C., . . . Angulo, A. (2020). Assessment and outlook of variable retort temperature profiles for the thermal processing of packaged foods: Plant productivity, product quality, and energy consumption. Journal of Food Engineering, 275, 109839. https://doi.org/10.1016/j.jfoodeng.2019.109839
Simpson, R., Ramirez, C., Jiménez, D., Almonacid, S., Nuñez, H., & Angulo, A. (2019). Simultaneous multi-product sterilization: Revisited, explored, and optimized. Journal of Food Engineering, 241, 149-158. https://doi.org/10.1016/j.jfoodeng.2018.08.007
Vandenberghe, E., Charalambides, M. N., Mohammed, I. K., De Ketelaere, B., De Baerdemaeker, J., & Claes, J. (2017). Determination of a critical stress and distance criterion for crack propagation in cutting models of cheese. Journal of Food Engineering, 208, 1-10. https://doi.org/10.1016/j.jfoodeng.2017.04.005
Vicent, V., Ndoye, F.-T., Verboven, P., Nicolaï, B., & Alvarez, G. (2019). Effect of dynamic storage temperatures on the microstructure of frozen carrot imaged using X-ray micro-CT. Journal of Food Engineering, 246, 232-241. https://doi.org/10.1016/j.jfoodeng.2018.11.015
CAPTCHA Image
دوره 13، شماره 1
اسفند 1402
صفحه 17-22
  • تاریخ دریافت: 11 مرداد 1401
  • تاریخ بازنگری: 12 دی 1401
  • تاریخ پذیرش: 28 دی 1401