بهینه‌یابی تأثیر غلظت نانورس هالویزیت و عصارۀ بنه بر ویژگی‌های فیلم آنتی‌اکسیدانی نانوکامپوزیتی نشاستۀ برنج-نانورس هالویزیت به روش سطح پاسخ

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه شیمی مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

در این پژوهش فیلم آنتی‌اکسیدانی نانوکامپوزیتی نشاستۀ برنج-نانورس هالویزیت حاوی عصارۀ بنه تهیه شد و خواص فیزیکومکانیکی و آنتی‌اکسیدانی آن موردارزیابی قرار گرفت. برای‌این‌منظور با انجام آزمایش‌هایی مطابق روش سطح پاسخ و در قالب طرح مرکب مرکزی، تأثیر دو متغیر مستقل شامل غلظت نانورس هالویزیت در محدودۀ صفر تا 10 درصد وزنی نشاسته و غلظت عصارۀ بنه در محدودۀ صفر تا 30 درصد وزنی نشاسته بر متغیرهای وابسته شامل مقاومت کششی، افزایش طول تا نقطۀ پارگی، نفوذپذیری بخار آب و فعالیت آنتی‌اکسیدانی فیلم بیونانوکامپوزیتی موردبررسی واقع شد. نتایج به‌دست‌آمده نشان داد که اثرات خطی غلظت هالویزیت و غلظت عصارۀ بنه در محدودۀ موردمطالعه، بر متغیرهای وابسته معنی‌دار بود (0/05<P) و با افزایش غلظت هالویزیت مقاومت کششی افزایش یافت و افزایش طول تا نقطۀ پارگی، نفوذپذیری بخار آب و فعالیت آنتی‌اکسیدانی فیلم با کاهش همراه بود. همچنین افزایش غلظت عصارۀ بنه موجب افزایش نفوذپذیری بخار آب، افزایش طول تا نقطۀ پارگی و فعالیت آنتی‌اکسیدانی و کاهش مقاومت کششی فیلم شد. مطابق نتایج به‌دست‌آمده از بهینه‌یابی اثرات غلظت هالویزیت و غلظت عصارۀ بنه بر ویژگی‌های  فیلم آنتی‌اکسیدانی، مقادیر بهینه برای غلظت هالویزیت و غلظت عصارۀ بنه به‌ترتیب 8/54 و 23/42 درصد وزنی و برای مقاومت کششی، افزایش طول تا نقطۀ پارگی، نفوذپذیری بخار آب و فعالیت آنتی‌اکسیدانی به‌ترتیب 4/39 مگاپاسکال، 56/21 درصد، 9-10×2/22 گرم بر متر ثانیه پاسکال و 95/33 درصد بود.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/).

Ahmad, Z., Hermain, H. Y., & Abdul Razak, N. H. (2015). Mechanical and Physical Properties of Sago Starch/Halloysite Nanocomposite Film. Advanced Materials Research, 1115, 394-397. https://doi.org/10.4028/www.scientific.net/AMR.1115.394
Ali, A., Yu, L., Liu, H., Khalid, S., Meng, L., & Chen, L. (2017). Preparation and characterization of starch‐based composite films reinforced by corn and wheat hulls. Journal of Applied Polymer Science, 134(32), 45159.
Arboleda, G. A., Montilla, C. E., Villada, H. S., & Varona, G. A. (2015). Obtaining a Flexible Film Elaborated from Cassava Thermoplastic Starch and Polylactic Acid. International Journal of Polymer Science, 2015, 627268. https://doi.org/10.1155/2015/627268
ASTM. (1995). Standard test methods for water vapor transmission of material (ASTM E96-95). In. Philadelphia, PA: American Society for Testing and Materials.
ASTM. (2002). Standard test method for tensile properties of thin plastic sheeting (ASTM D882-02). In: American Society for Testing and Materials.
Beigzadeh Ghelejlu, S., Esmaiili, M., & Almasi, H. (2016). Characterization of chitosan-nanoclay bionanocomposite active films containing milk thistle extract. Int J Biol Macromol, 86, 613-621. https://doi.org/10.1016/j.ijbiomac.2016.02.012
Berahman, R., Raiati, M., Mehrabi Mazidi, M., & Paran, S. M. R. (2016). Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: Effect of matrix hardness and HNT content. Materials & Design, 104, 333-345. https://doi.org/10.1016/j.matdes.2016.04.099
Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chemistry, 120(3), 736-740. https://doi.org/10.1016/j.foodchem.2009.11.002
Chung, K.-T., Wong, T. Y., Wei, C.-I., Huang, Y.-W., & Lin, Y. (1998). Tannins and Human Health: A Review. Critical Reviews in Food Science and Nutrition, 38(6), 421-464. https://doi.org/10.1080/10408699891274273
Delfanian, M., Khodaparast, M. H. H., Razavi, M. A., & Kenari, R. E. (2018). Influence of ultrasound-assisted extraction on bioavailibity of Bene hull (Pistacia atlantica subsp. Mutica) extract: testing optimal conditions and antioxidant activity. Iranian Food Science & Technology Research Journal, 14(3), 17-28.
Estevez-Areco, S., Guz, L., Famá, L., Candal, R., & Goyanes, S. (2019). Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocolloids, 96, 518-528. https://doi.org/10.1016/j.foodhyd.2019.05.054
Fazeli, M., Keley, M., & Biazar, E. (2018). Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. International Journal of Biological Macromolecules, 116, 272-280. https://doi.org/10.1016/j.ijbiomac.2018.04.186
Gourine, N., Yousfi, M., Bombarda, I., Nadjemi, B., Stocker, P., & Gaydou, E. M. (2010). Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Industrial Crops and Products, 31(2), 203-208. https://doi.org/10.1016/j.indcrop.2009.10.003
Hatamnia, A. A., Rostamzad, A., Hosseini, M., Abbaspour, N., Darvishzadeh, R., Malekzadeh, P., & Aminzadeh, B. M. (2016). Antioxidant capacity and phenolic composition of leaves from 10 Bene (Pistacia atlantica subsp. kurdica) genotypes. Natural Product Research, 30(5), 600-604. https://doi.org/10.1080/14786419.2015.1028060
He, Y., Kong, W., Wang, W., Liu, T., Liu, Y., Gong, Q., & Gao, J. (2012). Modified natural halloysite/potato starch composite films. Carbohydrate Polymers, 87(4), 2706-2711. https://doi.org/10.1016/j.carbpol.2011.11.057
Iamareerat, B., Singh, M., Sadiq, M. B., & Anal, A. K. (2018). Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. Journal of food science and technology, 55, 1953-1959
Jovanovic, S. V., Steenken, S., Tosic, M., Marjanovic, B., & Simic, M. G. (1994). Flavonoids as antioxidants. Journal of the American Chemical Society, 116(11), 4846-4851.
Ju, A., Baek, S. K., Kim, S., & Song, K. B. (2019). Development of an antioxidative packaging film based on khorasan wheat starch containing moringa leaf extract. 28(4), 1057-1063. https://doi.org/10.1007/s10068-018-00546-9
Kim, S., Kang, J.-H., & Song, K. B. (2020). Development of a Sword Bean (Canavalia gladiata) Starch Film Containing Goji Berry Extract. Food and Bioprocess Technology, 13(5), 911-921. https://doi.org/10.1007/s11947-020-02447-4
Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. (2004). Use of different methods for testing antioxidative activity of oregano essential oil. Food Chemistry, 85(4), 633-640. https://doi.org/10.1016/j.foodchem.2003.07.024
Kumar, P., Tanwar, R., Gupta, V., Upadhyay, A., Kumar, A., & Gaikwad, K. K. (2021). Pineapple peel extract incorporated poly(vinyl alcohol)-corn starch film for active food packaging: Preparation, characterization and antioxidant activity. International Journal of Biological Macromolecules, 187, 223-231. https://doi.org/10.1016/j.ijbiomac.2021.07.136
Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39(8), 1498-1525. https://doi.org/10.1016/j.progpolymsci.2014.04.004
Lu, D., Xiao, C., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3, 366-375.
Malekzadeh, P., Hatamnia, A. A. H., & Nourollahi, K. (2015). Total phenolic content and antioxidant activity of fruit and leaf of Bene (Pistacia atlantica subsp. Kurdica) in Ilam province. Iranian Journal of Plant Physiology, 6(1), 1543-1549. https://doi.org/10.30495/ijpp.2015.539646
Medina Jaramillo, C., González Seligra, P., Goyanes, S., Bernal, C., & Famá, L. (2015). Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch - Stärke, 67(9-10), 780-789. https://doi.org/10.1002/star.201500033
Mohamadi, M., Maskooki, A., & Mortazavi, S. (2012). Evaluation of antioxidant properties of barberry fruits extracts using maceration and subcritical water extraction (SWE). International Journal of Nutrition and Food Engineering, 6(9), 699-703.
Noushirvani, N., Ghanbarzadeh, B., & Entezami, A. A. (2011). Comparison of tensile, permeability and color properties of starch-based bionanocomposites containing two types of fillers: sodium montmorilonite and cellulose nanocrystal. Science and Technology, 24(5), 391-402. https://doi.org/10.22063/jipst.2013.602 (in Persian)
Pazhouhanmehr, S., Farhoosh, R., Esmaeilzadeh Kenari, R., & Sharif, A. (2015). Oxidative stability of purified common Kilka (Clupeonella cultiventris caspia) oil as a function of the bene kernel and hull oils. International Journal of Food Science & Technology, 50(2), 396-403 https://doi.org/10.1111/ijfs.12609
Pelissari, F. M., Grossmann, M. V. E., Yamashita, F., & Pineda, E. A. G. (2009). Antimicrobial, Mechanical, and Barrier Properties of Cassava Starch−Chitosan Films Incorporated with Oregano Essential Oil. Journal of Agricultural and Food Chemistry, 57(16), 7499-7504. https://doi.org/10.1021/jf9002363
Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., & Goyanes, S. (2017). Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food Hydrocolloids, 63, 488-495. https://doi.org/10.1016/j.foodhyd.2016.09.034
Ren, J., Dang, K. M., Pollet, E., & Avérous, L. (2018). Preparation and Characterization of Thermoplastic Potato Starch/Halloysite Nano-Biocomposites: Effect of Plasticizer Nature and Nanoclay Content. Polymers, 10(8)
Rezaie, M., Farhoosh, R., Pham, N., Quinn, R. J., & Iranshahi, M. (2016). Dereplication of antioxidant compounds in Bene (Pistacia atlantica subsp. mutica) hull using a multiplex approach of HPLC–DAD, LC–MS and 1H NMR techniques. Journal of Pharmaceutical and Biomedical Analysis, 117, 352-362. https://doi.org/10.1016/j.jpba.2015.09.005
Rodoni, L. M., Feuring, V., Zaro, M. J., Sozzi, G. O., Vicente, A. R., & Arena, M. E. (2014). Ethylene responses and quality of antioxidant-rich stored barberry fruit (Berberis microphylla). Scientia Horticulturae, 179, 233-238. https://doi.org/10.1016/j.scienta.2014.09.023
Sadegh-Hassani, F., & Mohammadi Nafchi, A. (2014). Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. International Journal of Biological Macromolecules, 67, 458-462. https://doi.org/10.1016/j.ijbiomac.2014.04.009
Schmitt, H., Prashantha, K., Soulestin, J., Lacrampe, M. F., & Krawczak, P. (2012). Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydrate Polymers, 89(3), 920-927. https://doi.org/10.1016/j.carbpol.2012.04.037
Stepto, R. F. T. (2003). The Processing of Starch as a Thermoplastic. Macromolecular Symposia, 201, 203-212. https://doi.org/10.1002/masy.200351123
Tanwar, R., Gupta, V., Kumar, P., Kumar, A., Singh, S., & Gaikwad, K. K. (2021). Development and characterization of PVA-starch incorporated with coconut shell extract and sepiolite clay as an antioxidant film for active food packaging applications. International Journal of Biological Macromolecules, 185, 451-461. https://doi.org/10.1016/j.ijbiomac.2021.06.179
Teixeira, E. d. M., Pasquini, D., Curvelo, A. A. S., Corradini, E., Belgacem, M. N., & Dufresne, A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydrate Polymers, 78(3), 422-431. https://doi.org/10.1016/j.carbpol.2009.04.034
Xie, Y., Chang, P. R., Wang, S., Yu, J., & Ma, X. (2011). Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. starch composites. Carbohydrate Polymers, 83(1), 186-191. https://doi.org/10.1016/j.carbpol.2010.07.039
Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. https://doi.org/10.1016/j.progpolymsci.2006.03.002
CAPTCHA Image
دوره 12، شماره 2
شهریور 1402
صفحه 245-258
  • تاریخ دریافت: 0-199 فروردین 781
  • تاریخ بازنگری: 0-83 فروردین 781
  • تاریخ پذیرش: 0-66 فروردین 781