The use of Transglutaminase and Gallic acid as Stabilizers and Thickeners in the Production of Ice cream

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 Department of Food Science, College of Agriculture, University of Basrah, Iraq

2 Department of Food Processing, Research Institute of Food Science and Technology, Mashhad, Iran

3 Food Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt

چکیده

This study aimed to utilize transglutaminase and gallic acid as stabilizers and thickeners in ice cream production. Additionally, it explored the potential for enhancing the physicochemical properties of ice cream mixtures by partially replacing the stabilizer with transglutaminase (0.36g/100gprotein) (IC2), gallic acid (2.5g) (IC3), and a combination of transglutaminase (0.22g/100gprotein) and gallic (1.5g) acid (IC4). These mixtures were compared with a control mixture containing only the stabilizer (IC1). The properties of the prepared ice cream, including titratable acidity, pH, melting time, morphology, thermal stability, and sensory attributes, were studied.  The results revealed that IC4 exhibited superior properties compared to the control mixture and other prepared mixtures across all evaluated aspects. Specifically, the study observed a decrease in pH alongside an increase in titratable acidity after aging, and IC4 demonstrated the highest melting time, stability, and overall acceptance. Furthermore, sensory evaluation results showed that the IC4 blend received the highest sensory rating at 91%. Overall, these findings highlight the potential for optimizing ice cream formulations through strategic use of additives, paving the way for advancements in ice cream production and product quality.

کلیدواژه‌ها

موضوعات

Akın, M., Akın, M., & Kırmacı, Z. (2007). Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice-cream. Food chemistry, 104(1), 93-99. https://doi.org/10.1016/j.foodchem.2006.11.030
Akin, M. S., Goncu, B., & Akin, M. B. (2019). Designing an industrial protocol to develop a new fat-reduced-ice cream formulation by replacing stabilizers with microbial transglutaminase enzyme. Mljekarstvo/Dairy, 69(3). https://doi.org/10.15567/mljekarstvo.2019.0302
Al, M., Ersöz, F., Özaktaş, T., Türkanoğlu‐Özçelik, A., & Küçükçetin, A. (2020). Comparison of the effects of adding microbial transglutaminase to milk and ice cream mixture on the properties of ice cream. International Journal of Dairy Technology, 73(3), 578-584. https://doi.org/10.1111/1471-0307.12707
Al Musa, R. S., & Al Garory, N. H. (2023). Studying the Chemical Composition and Nutritional Value of the Buttermilk Made From Iraqi Buffalo Milk and Its Use in the Manufacture of Healthy Ice Cream. IOP Conference Series: Earth and Environmental Science,
Aloğlu, H. Ş., & Öner, Z. (2013). The effect of treating goat's milk with transglutaminase on chemical, structural, and sensory properties of labneh. Small ruminant research, 109(1), 31-37. https://doi.org/10.1016/j.smallrumres.2012.10.005
Andriani, R. D., Rahayu, P. P., Mustakim, M., Apriliyani, M. W., Sawitri, M. E., Manab, A., & Nida, S. S. (2022). The physical characteristics of ice cream with the addition of goat bone gelatine as a stabilizer. E3S Web of Conferences,
AOAC. (2010). Official methods of analysis of the Association of Official Analytical Chemists (Vol. 2). Association of Official Analytical Chemists.
Asminaya, N. S., Kurniawan, W., Apriansyah, A., & Kimestri, A. B. (2022). Physical Quality Test of Ice Cream Sweetened Using Honey. International Conference on Improving Tropical Animal Production for Food Security (ITAPS 2021),
Azevedo, V. M., Borges, S. V., Marconcini, J. M., Yoshida, M. I., Neto, A. R. S., Pereira, T. C., & Pereira, C. F. G. (2017). Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydrate Polymers, 157, 971-980. https://doi.org/10.1016/j.carbpol.2016.10.046
Bayraktar, M. K., Harbourne, N. B., & Fagan, C. C. (2019). Impact of heat treatment and acid gelation on polyphenol enriched milk samples. LWT, 113, 108282. https://doi.org/10.1016/j.lwt.2019.108282
Cláudio, A. F. M., Ferreira, A. M., Freire, C. S., Silvestre, A. J., Freire, M. G., & Coutinho, J. A. (2012). Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Separation and Purification Technology, 97, 142-149. https://doi.org/10.1016/j.seppur.2012.02.036
da Costa, B. S., García, M. O., Muro, G. S., & Motilva, M.-J. (2023). A comparative evaluation of the phenol and lycopene content of tomato by-products subjected to different drying methods. LWT, 179, 114644. https://doi.org/10.1016/j.lwt.2023.114644
Eissa, A. S., & Khan, S. A. (2005). Acid-induced gelation of enzymatically modified, preheated whey proteins. Journal of agricultural and food chemistry, 53(12), 5010-5017. https://doi.org/10.1021/jf047957w
El-Maksoud, A. A. A., Hesarinejad, M.A., Abedelmaksoud, T.G. . (2023). Exploring the potential of sprouted soybeans and sesame hulls in the production of functional ice cream. Food Systems, 6(3).
El‐Hadad, S. S., Tikhomirova, N. A., & Abd El‐Aziz, M. (2020). Biological activities of dihydroquercetin and its effect on the oxidative stability of butter oil. Journal of Food Processing and Preservation, 44(7), e14519. https://doi.org/10.1111/jfpp.14519
Elkot, W. F., Ateteallah, A. H., Al-Moalem, M. H., Shahein, M. R., Alblihed, M. A., Abdo, W., & Elmahallawy, E. K. (2022). Functional, physicochemical, rheological, microbiological, and organoleptic properties of synbiotic ice cream produced from camel milk using black rice powder and Lactobacillus acidophilus LA-5. Fermentation, 8(4), 187. https://doi.org/10.3390/fermentation8040187
Er, B., Sert, D., & Mercan, E. (2019). Production of skim milk powder by spray-drying from transglutaminase treated milk concentrates: Effects on physicochemical, powder flow, thermal and microstructural characteristics. International Dairy Journal, 99, 104544. https://doi.org/10.1016/j.idairyj.2019.104544
Gabbi, D. K., Bajwa, U., & Goraya, R. K. (2018). Physicochemical, melting and sensory properties of ice cream incorporating processed ginger (Zingiber officinale). International Journal of Dairy Technology, 71(1), 190-197. https://doi.org/10.1111/1471-0307.12430
Gaspar, A. L. C., & de Góes-Favoni, S. P. (2015). Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food chemistry, 171, 315-322. https://doi.org/10.1016/j.foodchem.2014.09.019
Ghaderi, S., Mazaheri Tehrani, M., & Hesarinejad, M. A. (2021). Qualitative analysis of the structural, thermal and rheological properties of a plant ice cream based on soy and sesame milks. Food Science & Nutrition, 9(3), 1289-1298. https://doi.org/10.1002/fsn3.2037
Goktas, H., Dikmen, H., Bekiroglu, H., Cebi, N., Dertli, E., & Sagdic, O. (2022). Characteristics of functional ice cream produced with probiotic Saccharomyces boulardii in combination with Lactobacillus rhamnosus GG. LWT, 153, 112489. https://doi.org/10.1016/j.lwt.2021.112489
Hazrati, Z., & Madadlou, A. (2021). Gelation by bioactives: Characteristics of the cold-set whey protein gels made using gallic acid. International Dairy Journal, 117, 104952. https://doi.org/10.1016/j.idairyj.2020.104952
Hernández-Rodríguez, L., Lobato-Calleros, C., Ramírez-Santiago, C., Rodríguez-Huezo, M., & Meraz, M. (2017). Microstructure and rheology of yogurt added with protein-L. plantarum-polysaccharide coacervate and stevia in substitution of milk-fat and sucrose. Revista Mexicana de Ingeniería Química, 16(1), 77-89.
Kasprzyk, I., Markowska, J., & Polak, E. (2016). Effect of microbial transglutaminase on ice cream heat resistance properties-a short report. Polish Journal of Food and Nutrition Sciences, 66(3), 227-231. https://doi.org/10.1515/pjfns-2015-0037
Khalil, A., Gerardin-Charbonnier, C., Chapuis, H., Ferji, K., & Six, J.-L. (2021). Original bio-based antioxidant poly (meth) acrylate from gallic acid-based monomers. ACS Sustainable Chemistry & Engineering, 9(34), 11458-11468. https://doi.org/10.1021/acssuschemeng.1c03607
Khosrow Shahi, S., Didar, Z., Hesarinejad, M. A., & Vazifedoost, M. (2021). Optimized pulsed electric field‐assisted extraction of biosurfactants from Chubak (Acanthophyllum squarrosum) root and application in ice cream. Journal of the Science of Food and Agriculture, 101(9), 3693-3706. https://doi.org/10.1002/jsfa.11000
Liu, X., Sala, G., & Scholten, E. (2023). Structural and functional differences between ice crystal-dominated and fat network-dominated ice cream. Food Hydrocolloids, 138, 108466. https://doi.org/10.1016/j.foodhyd.2023.108466
Mahdian, E., Radnia, M. R., Mohammadi Sani, A., & Hesarinejad, M. (2023). Investigating the properties of ice cream containing Arvaneh plant (Hymenocrater platystegius Rech. F.) extract. Research and Innovation in Food Science and Technology. https://doi.org/10.22101/JRIFST.2023.376105.1419 (in Persian)
Minal, N., Balakrishnan, S., Chaudhary, N. N., & Jain, A. (2017). Lactobionic acid: Significance and application in food and pharmaceutical. International Journal of Fermented Foods, 6(1), 25-33.
Moreno, M. T., Brito, R. E., & Mellado, J. M. R. (2020). Modified CUPRAC method with electrochemical detection for the determination of antioxidant capacity of gallic acid. Comptes Rendus. Chimie, 23(6-7), 395-401. https://doi.org/10.5802/crchim.39
Motoki, M., & Seguro, K. (1998). Transglutaminase and its use for food processing. Trends in food science & technology, 9(5), 204-210. https://doi.org/10.1016/S0924-2244(98)00038-7
Olson, D., White, C., & Watson, C. (2003). Properties of frozen dairy desserts processed by microfluidization of their mixes. Journal of Dairy Science, 86(4), 1157-1162. https://doi.org/10.3168/jds.S0022-0302(03)73698-4
Patel, A., & Velikov, K. P. (2011). Colloidal delivery systems in foods: A general comparison with oral drug delivery. LWT-Food Science and Technology, 44(9), 1958-1964. https://doi.org/10.1016/j.lwt.2011.04.005
Pereira, C., Schmidt, C. A. P., Kalschne, D. L., Carpes, S. T., Ourique, F., Ferreira, C., . . . Pedrosa, R. C. (2020). Effect of lactase, transglutaminase and temperature on ice cream crystal by a response surface methodology approach. Research, Society and Development, 9(11), e72191110138-e72191110138.
Rahmani, F., Fadaei, V., & Tabari, M. (2014). The effect of enzyme transglutaminase on some physico-chemical properties of prebiotic low-fat traditional ice cream. Int. J. Biol. Biotech, 11(4), 555-561.
Romulo, A., & Meindrawan, B. (2021). Effect of Dairy and Non-Dairy Ingredients on the Physical Characteristic of Ice Cream. IOP Conference Series: Earth and Environmental Science,
Rossa, P. N., de Sá, E. M. F., Burin, V. M., & Bordignon-Luiz, M. T. (2011). Optimization of microbial transglutaminase activity in ice cream using response surface methodology. LWT-Food Science and Technology, 44(1), 29-34. https://doi.org/10.1016/j.lwt.2010.06.013
Sanjeewa, P., Mylvaganam, P., Liyinthan, V., & Janaranjana, T. N. (2023). Evaluation of physicochemical and sensory properties of ice cream incorporating processed amla. European Journal of Agriculture and Food Sciences, 5(1), 40-45. https://doi.org/10.24018/ejfood.2023.5.1.600
Şanlidere Aloğlu, H., Özcan, Y., Karasu, S., Çetin, B., & Sağdiç, O. (2018). Influence of transglutaminase treatment on the physicochemical, rheological, and melting properties of ice cream prepared from goat milk. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 68(2), 126-138. https://doi.org/10.15567/mljekarstvo.2018.0206
Shadordizadeh, T., Mahdian, E., & Hesarinejad, M. A. (2023). Application of encapsulated Indigofera tinctoria extract as a natural antioxidant and colorant in ice cream. Food Science & Nutrition, 11(4), 1940-1951. https://doi.org/10.1002/fsn3.3228
Shamshad, A., Butt, M. S., Nayik, G. A., Al Obaid, S., Ansari, M. J., Karabagias, I. K., . . . Ramniwas, S. (2023). Effect of storage on physicochemical attributes of ice cream enriched with microencapsulated anthocyanins from black carrot. Food Science & Nutrition, 11(7), 3976-3988. https://doi.org/10.1002/fsn3.3384
Singo, T., & Beswa, D. (2019). Effect of roselle extracts on the selected quality characteristics of ice cream. International Journal of Food Properties, 22(1), 42-53. https://doi.org/10.1080/10942912.2019.1567535
Soad, H., Mehriz, A., & Hanafy, M. (2014). Quality characteristics of ice milk prepared with combined stabilizers and emulsifiers blends. International Food Research Journal, 21(4).
van Lith, R., & Ameer, G. A. (2016). Antioxidant polymers as biomaterial. In Oxidative Stress and Biomaterials (pp. 251-296). Elsevier.
Wang, C. H., & Damodaran, S. (1991). Thermal gelation of globular proteins: influence of protein conformation on gel strength. Journal of agricultural and food chemistry, 39(3), 433-438. https://doi.org/10.1021/jf00003a001
Xu, J., Yang, L., Nie, Y., Yang, M., Wu, W., Wang, Z., . . . Zhong, J. (2022). Effect of transglutaminase crosslinking on the structural, physicochemical, functional, and emulsion stabilization properties of three types of gelatins. LWT, 163, 113543. https://doi.org/10.1016/j.lwt.2022.113543
Zagorska, J., Paeglite, I., & Galoburda, R. (2022). Application of lactobionic acid in ice cream production. International Journal of Dairy Technology, 75(3), 701-709. https://doi.org/10.1111/1471-0307.12873
Zhu, Z., & Gong, D. (2014). Determination of the experimental conditions of the transglutaminase-mediated restoration of thermal aged silk by orthogonal experiment. Journal of cultural heritage, 15(1), 18-25. https://doi.org/10.1016/j.culher.2012.12.002
CAPTCHA Image

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 29 اسفند 1402
  • تاریخ دریافت: 05 مهر 1402
  • تاریخ بازنگری: 23 بهمن 1402
  • تاریخ پذیرش: 24 بهمن 1402