نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه فیتوشیمی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار، گروه فیتوشیمی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، تهران، ایران

3 دانشیار، گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

آب انار منبع طبیعی شناخته‌‎شده برای آنتوسیانین‌‎های طبیعی ازجمله مشتقات گلیکوزیدی دلفینیدین، سیانیدین و پلارگونیدین می‌باشد. استفاده از رزین‌ها در صنایع مختلف از سابقۀ زیادی برخوردار است. در این مطالعه، از رزین‎‌های پلیمری جذبی برای غنی‌‎سازی آنتوسیانین‌‎های آب انار استفاده شد. رنگدانه‌‎های آنتوسیانینی موجود در آب انار به کمک رزین SEPLITE®LXA10 جداسازی و غنی‌سازی گردید. مقدار آنتوسیانین کل در آب انار طبیعی حدود 20 درصد یا کمتر است که بعد از مرحلۀ غنی‎‌سازی مقدار آن به 90 درصد افزایش یافت. درنهایت پودر آنتوسیانین به روش خشک‎‌کن پاششی با بازده 89/6 درصد به‌‎دست‌‎آمد. مقدار آنتوسیانین کل حاصل از پودر به‎‌دست‌‎آمده در نمونه‌‎های پودر غنی‌‏شده و آب انار به‌‏ترتیب 89/6 و 21 درصد بود. روش غنی‌‎سازی ارائه‌‎شده برای آنتوسیانین‌‎ها توسط رزین‌‎های پلیمری باعث حذف مواد جانبی غیرضروری و افزایش کیفیت و شدت رنگ طبیعی آن می‌‎شود. تصاویر میکروسکوپ الکترونی روبشی (SEM) ثبت‎‌شده مربوط به پودر آنتوسیانین غنی‌‎شده، توزیع ذرات یکنواخت و با ساختار کروی را نشان می‌‎دهد که در مقایسه با پودر به‌دست‌‎آمده از آب انار کیفیت بهتری داشتند. اندازۀ ذرات به‌‎دست‌‎آمده بین 1 تا 6 میکرومتر و با ساختار کروی بود. باتوجه‌به بالابودن قیمت آنتوسیانین و کاربرد فراوان آن در صنایع غذایی و واردات زیاد آن به کشور نتایج این تحقیق می‎‌تواند درجهت رفع نیاز صنایع غذایی، دارویی و آرایشی به آنتوسیانین غنی‎‌شده موردتوجه قرار گیرد.

کلیدواژه‌ها

عزیزطائمه، ح.، ویسری، ا. ک.، و رضوی، ج. (1384). خشک کردن آب انار با روش پاششی. علوم و صنایع غذایی ایران، 2(3)، 59-65.
وزارت‌ جهاد کشاورزی. (1398). آمارنامه کشاورزی، سال 1397. برگرفته از https://www.maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj3-1397-site.pdf
Abdel-Aal, E.-S. M., Young, J. C., & Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of agricultural and food chemistry, 54(13), 4696-4704. doi:https://doi.org/10.1021/jf0606609
Aberoumand, A. (2011). A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World Journal of Dairy & Food Sciences, 6(1), 71-78.
Albert, N. W., Lewis, D. H., Zhang, H., Irving, L. J., Jameson, P. E., & Davies, K. M. (2009). Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of experimental botany, 60(7), 2191-2202. doi:https://doi.org/10.1093/jxb/erp097
Alighourchi, H., Barzegar, M., Sahari, M., & Abbasi, S. (2013). Effect of sonication on anthocyanins, total phenolic content, and antioxidant capacity of pomegranate juices. International Food Research Journal, 20(4).
Aziztaemeh, H., Kazemi, A., & Razavi, J. (2005). Pomegranate juice powder production. Food Science and Technology, 2(3), 59-65.  (in Persian)
Boo, H.-O., Hwang, S.-J., Bae, C.-S., Park, S.-H., Heo, B.-G., & Gorinstein, S. (2012). Extraction and characterization of some natural plant pigments. Industrial Crops and Products, 40, 129-135. doi:https://doi.org/10.1016/j.indcrop.2012.02.042
Borges, G., & Crozier, A. (2012). HPLC–PDA–MS fingerprinting to assess the authenticity of pomegranate beverages. Food chemistry, 135(3), 1863-1867. doi:https://doi.org/10.1016/j.foodchem.2012.05.108
Buran, T. J., Sandhu, A. K., Li, Z., Rock, C. R., Yang, W. W., & Gu, L. (2014). Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. Journal of Food Engineering, 128, 167-173. doi:https://doi.org/10.1016/j.jfoodeng.2013.12.029
Chandrasekhar, J., Madhusudhan, M., & Raghavarao, K. (2012). Extraction of anthocyanins from red cabbage and purification using adsorption. Food and bioproducts processing, 90(4), 615-623. doi:https://doi.org/10.1016/j.fbp.2012.07.004
Chen, Y., Zhang, W., Zhao, T., Li, F., Zhang, M., Li, J., . . . Wu, X. (2016). Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry. Food chemistry, 194, 712-722. doi:https://doi.org/10.1016/j.foodchem.2015.08.084
Cortez, R., Luna‐Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180-198. doi:https://doi.org/10.1111/1541-4337.12244
da Silva, F. L., Escribano-Bailón, M. T., Alonso, J. J. P., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (2007). Anthocyanin pigments in strawberry. LWT-Food Science and Technology, 40(2), 374-382. doi:https://doi.org/10.1016/j.lwt.2005.09.018
Esfandani Bozchaloyi, S., & Sheidai, M. (2018). Molecular diversity and genetic relationships among Geranium pusillum and G. pyrenaicum with inter simple sequence repeat (ISSR) regions. Caryologia, 71(4), 457-470. doi:https://doi.org/10.1080/00087114.2018.1503500
Horuz, E., Altan, A., & Maskan, M. (2012). Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technology, 30(7), 787-798. doi:https://doi.org/10.1080/07373937.2012.663434
Iran Ministry of Agriculture-Jahad. (2019). Agricultural Statistics, 2018. Retrieved from https://www.maj.ir/Dorsapax/userfiles/Sub65/Amarnamehj3-1397-site.pdf (in Persian)
Jafari, S. M., Ghalenoei, M. G., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder technology, 311, 59-65. doi:https://doi.org/10.1016/j.powtec.2017.01.070
Kähkönen, M. P., Heinämäki, J., Ollilainen, V., & Heinonen, M. (2003). Berry anthocyanins: isolation, identification and antioxidant activities. Journal of the Science of Food and Agriculture, 83(14), 1403-1411. doi:https://doi.org/10.1002/jsfa.1511
Kamei, H., Kojima, T., Hasegawa, M., Koide, T., Umeda, T., Yukawa, T., & Terabe, K. (1995). Suppression of tumor cell growth by anthocyanins in vitro. Cancer Investigation, 13(6), 590-594. doi:https://doi.org/10.3109/07357909509024927
Kar, A., Mahato, D. K., Patel, A. S., & Bal, L. M. (2019). The encapsulation efficiency and physicochemical characteristics of anthocyanin from black carrot (Daucus carota Ssp. sativus) as affected by encapsulating materials. Current Agriculture Research Journal, 7(1), 26-36. doi:http://dx.doi.org/10.12944/CARJ.7.1.04
Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC international, 88(5), 1269-1278. doi:https://doi.org/10.1093/jaoac/88.5.1269
Lv, L., Tang, J., & Ho, C. T. (2008). Selection and optimisation of macroporous resin for separation of stilbene glycoside from Polygonum multiflorum Thunb. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(10), 1422-1427. doi:https://doi.org/10.1002/jctb.1964
Mahdavi, A., & Jafari, M. (2004). Microencapsulation of Anthocyanins by Spray Drying; a Review: Department of Food Materials and Process Design Engineering, University of ….
Netzel, M., Strass, G., Herbst, M., Dietrich, H., Bitsch, R., Bitsch, I., & Frank, T. (2005). The excretion and biological antioxidant activity of elderberry antioxidants in healthy humans. Food Research International, 38(8-9), 905-910. doi:https://doi.org/10.1016/j.foodres.2005.03.010
Özcan, T. (2004). Analysis of the fruit surfaces in Bupleurum L.(Umbelliferae) with SEM. Plant Systematics and Evolution, 247(1), 61-74. doi:https://doi.org/10.1007/s00606-004-0135-1
Pinelli, D., Molina Bacca, A. E., Kaushik, A., Basu, S., Nocentini, M., Bertin, L., & Frascari, D. (2016). Batch and continuous flow adsorption of phenolic compounds from olive mill wastewater: A comparison between nonionic and ion exchange resins. International Journal of Chemical Engineering, 2016. doi:https://doi.org/10.1155/2016/9349627
Russo, M., Fanali, C., Tripodo, G., Dugo, P., Muleo, R., Dugo, L., . . . Mondello, L. (2018). Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties. Analytical and bioanalytical chemistry, 410(15), 3507-3520. doi:https://doi.org/10.1007/s00216-018-0854-8
Shah, B., Tailor, R., & Shah, A. (2012). Equilibrium, kinetics, and breakthrough curve of phenol sorption on zeolitic material derived from BFA. Journal of dispersion science and technology, 33(1), 41-51. doi:https://doi.org/10.1080/01932691.2010.530079
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299, 152-178. doi:https://doi.org/10.1016/S0076-6879(99)99017-1
Thibado, S. P., Thornthwaite, J. T., Ballard, T. K., & Goodman, B. T. (2018). Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins. Molecular and clinical oncology, 8(2), 330-335. doi: https://doi.org/10.3892/mco.2017.1520
Todaro, A., Cimino, F., Rapisarda, P., Catalano, A. E., Barbagallo, R. N., & Spagna, G. (2009). Recovery of anthocyanins from eggplant peel. Food chemistry, 114(2), 434-439. doi:https://doi.org/10.1016/j.foodchem.2008.09.102
Viljanen, K., Kivikari, R., & Heinonen, M. (2004). Protein− lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. Journal of agricultural and food chemistry, 52(5), 1104-1111. doi:https://doi.org/10.1021/jf034785e
Wallace, T. C. (2011). Anthocyanins in cardiovascular disease. Advances in nutrition, 2(1), 1-7. doi:https://doi.org/10.3945/an.110.000042
Watson, M. A., Lea, J. M., & Bett‐Garber, K. L. (2017). Spray drying of pomegranate juice using maltodextrin/cyclodextrin blends as the wall material. Food science & nutrition, 5(3), 820-826. doi:https://doi.org/10.1002/fsn3.467
Xiong, Q., Zhang, Q., Zhang, D., Shi, Y., Jiang, C., & Shi, X. (2014). Preliminary separation and purification of resveratrol from extract of peanut (Arachis hypogaea) sprouts by macroporous adsorption resins. Food chemistry, 145, 1-7. doi:https://10.1016/j.foodchem.2013.07.140