بهینه‌سازی استخراج آنتوسیانین از گل چای‌ترش (Hibiscus sabdariffa) با استفاده از روش‌های روش‌شناسی سطح پاسخ (RSM)، مدل‌سازی جنبشی، انتقال جرم و مطالعه‌های ترمودینامیکی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه مهندسی کشاورزی و مهندسی منابع زیستی، دانشگاه نیجریه، نسوکا، نیجریه

2 گروه علوم و صنایع غذایی، دانشگاه نیجریه، نسوکا، نیجریه

3 مرکز عالی آفریقا برای توسعه انرژی و انرژی پایدار (ACESPED)، دانشگاه نیجریه، نسوکا، نیجریه

چکیده

گل چای‌ترش (Hibiscus sabdariffa) در صنایع غذایی و نوشیدنی بسیار در حال اهمیت‌یافتن است، به‌ویژه به‌دلیل وجود آنتوسیانین که آنتی‌اکسیدان است که به این گل رنگ قرمز می‌بخشد. تأثیر پارامترهای فراوری مانند زمان تماس، دما و نسبت این گل به آب بر میزان آنتوسیانین عصارۀ گل، همراه با ارزیابی مدل‌های جنبشی، انتقال جرم و پارامترهای ترمودینامیکی، موردمطالعه و بهینه‌سازی قرار گرفت. استخراج جنبشی برای آنتوسیانین در زمان‌های مختلف (5، 10 و 15 دقیقه)، دما (30، 50، 75 و 100 درجۀ سانتی‌گراد) و نسبت جرم چای‌ترش به آب (1:50، 1:20 و 1:10) صورت گرفت. حداکثر عملکرد آنتوسیانین در مدت زمان 15دقیقه دمای 100 درجۀ سانتی‌گراد و نسبت 1:10 به‌دست‌آمد. داده‌های به‌دست‌آمده در 6 مدل استخراج مختلف برازش داده شد و مدل‌هایی که به بهترین وجه برای داده‌ها مناسب‌تر بودند، نوع وایبول، پلگ و شبه مرتبه دوم (Pseudo-second-order) همراه Adj بودند. R2 به‌ترتیب 0/98، 0/99 و 0/99 بود. داده‌های به‌دست‌آمده برای محاسبۀ پارامترهای جنبشی، انتقال جرم و ترمودینامیکی مورد استفاده قرار گرفت. متغیرهای جنبشی نیز به مدل استخراج کسری یا تبدیل مرتبط بودند. استخراج کسری با افزایش دما و گل چای‌ترش افزایش یافت. ضریب نفوذ مؤثر بین 10-11×1/04 تا 10-11×1/48 مترمربع بر ثانیه بود. ضریب انتقال جرم محاسبه‌شده بین 1/62×10-8 و 11/02×10-8 (متر بر ثانیه) بود، تعداد Biot از 25 تا 168 متغیر است. آنتالپی از 36/60 تا 58/30 بر کیلوژول‌ مول، آنتروپی از 88 تا 147 بر ژول‌کیلوگرم بر مول و انرژی آزاد گیبس از5/80- تا 11- بر کیلوژول مول. براساس مشاهده‌های این تحقیق، فرایند استخراج به‌صورت گرماگیر، امکان‌پذیر و خود درنظرگرفته شد.

کلیدواژه‌ها

موضوعات

© 2023, Research Institute of Food Science and Technology. All rights reserved.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY 4.0). To view a copy of this license, visit (https://creativecommons.org/licenses/by/4.0/)

Abdelhameed, R. M., Rocha, J., & Silva, A. M. S. (2021). Selective separation of hibiscus acid from Roselle extracts by an amino-functionalized Metal Organic Framework. Journal of Chromatography A, 1636, 461789. https://doi.org/https://doi.org/10.1016/j.chroma.2020.461789
Abidoye, A. O., Ojedokun, F. O., Fasogbon, B. M., & Bamidele, O. P. (2022). Effects of sweet basil leaves (Ocimum basilicum L) addition on the chemical, antioxidant, and storage stability of roselle calyces (Hibiscus sabdariffa) drink. Food Chemistry, 371, 131170. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.131170
Ai, J., Wu, Q., Battino, M., Bai, W., & Tian, L. (2021). Using untargeted metabolomics to profile the changes in roselle (Hibiscus sabdariffa L.) anthocyanins during wine fermentation. Food Chemistry, 364, 130425. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.130425
Alara, O. R., & Abdurahman, N. H. (2019). Kinetics studies on effects of extraction techniques on bioactive compounds from Vernonia cinerea leaf. Journal of food science and technology, 56(2), 580-588. https://doi.org/10.1007/s13197-018-3512-4
Ali, A., Lim, X. Y., Chong, C. H., Mah, S. H., & Chua, B. L. (2018). Ultrasound-assisted extraction of natural antioxidants from betel leaves (Piper betle): Extraction kinetics and modeling. Separation Science and Technology, 53(14), 2192-2205. https://doi.org/10.1080/01496395.2018.1443137
Ali, B. H., Al Wabel, N., & Blunden, G. (2005). Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review. Phytotherapy research : PTR, 19(5), 369-375. https://doi.org/10.1002/ptr.1628
Aly, A. A., Ali, H. G. M., & Eliwa, N. E. R. (2019). Phytochemical screening, anthocyanins and antimicrobial activities in some berries fruits. Journal of Food Measurement and Characterization, 13(2), 911-920. https://doi.org/10.1007/s11694-018-0005-0
Amendola, D., De Faveri, D. M., & Spigno, G. (2010). Grape marc phenolics: Extraction kinetics, quality and stability of extracts. Journal of Food Engineering, 97(3), 384-392. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2009.10.033
Basu, A., Rhone, M., & Lyons, T. J. (2010). Berries: emerging impact on cardiovascular health. Nutrition reviews, 68(3), 168-177. https://doi.org/10.1111/j.1753-4887.2010.00273.x
Cissé, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., & Dornier, M. (2012). Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. Journal of Food Engineering, 109(1), 16-21. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2011.10.012
Cisse, M., Vaillant, F., Acosta, O., Dhuique-Mayer, C., & Dornier, M. (2009). Thermal Degradation Kinetics of Anthocyanins from Blood Orange, Blackberry, and Roselle Using the Arrhenius, Eyring, and Ball Models. Journal of agricultural and food chemistry, 57(14), 6285-6291. https://doi.org/10.1021/jf900836b
Cisse, M., Vaillant, F., Soro, D., Reynes, M., & Dornier, M. (2011). Crossflow microfiltration for the cold stabilization of roselle (Hibiscus sabdariffa L.) extract. Journal of Food Engineering, 106(1), 20-27. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2011.04.001
Corradini, M. G., & Peleg, M. (2007). Shelf-life estimation from accelerated storage data. Trends in Food Science & Technology, 18(1), 37-47. https://doi.org/https://doi.org/10.1016/j.tifs.2006.07.011
Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I., & Heinrich, M. (2014). Hibiscus sabdariffa L. - a phytochemical and pharmacological review. Food Chemistry, 165, 424-443. https://doi.org/10.1016/j.foodchem.2014.05.002
Du, C. T., & Francis, F. J. (1973). Anthocyanins of roselle (Hibiscus sabdariffa, L.). Journal of Food Science, 38(5), 810-812. https://doi.org/https://doi.org/10.1111/j.1365-2621.1973.tb02081.x
Janković, S., Mitić, M., Arsić, B., & Stankov-Jovanović, V. (2021). The kinetic and thermodynamic studies of solid-liquid extraction of apigenin-glycosides from parsley (Petroselinum crispum). Separation Science and Technology, 56(13), 2253-2265. https://doi.org/10.1080/01496395.2020.1821219
Jo, Y.-J., & Kim, J.-H. (2019). Effective Diffusivity and Mass Transfer Coefficient during the Extraction of Paclitaxel from Taxus chinensis Using Methanol. Biotechnology and Bioprocess Engineering, 24(5), 818-823. https://doi.org/10.1007/s12257-019-0148-9
Juliani, H. R., Welch, C. R., Wu, Q., Diouf, B., Malainy, D., & Simon, J. E. (2009). Chemistry and quality of Hibiscus (Hibiscus sabdariffa) for developing the natural-product industry in Senegal. Journal of Food Science, 74(2), S113-121. https://doi.org/10.1111/j.1750-3841.2009.01076.x
Jurinjak Tušek, A., Benković, M., Belščak Cvitanović, A., Valinger, D., Jurina, T., & Gajdoš Kljusurić, J. (2016). Kinetics and thermodynamics of the solid-liquid extraction process of total polyphenols, antioxidants and extraction yield from Asteraceae plants. Industrial Crops and Products, 91, 205-214. https://doi.org/https://doi.org/10.1016/j.indcrop.2016.07.015
Lee, W. C., Wang, C. J., Chen, Y. H., Hsu, J. D., Cheng, S. Y., Chen, H. C., & Lee, H. J. (2009). Polyphenol extracts from Hibiscus sabdariffa Linnaeus attenuate nephropathy in experimental type 1 diabetes. Journal of agricultural and food chemistry, 57(6), 2206-2210. https://doi.org/10.1021/jf802993s
Liu, J.-Y., Chen, C.-C., Wang, W.-H., Hsu, J.-D., Yang, M.-Y., & Wang, C.-J. (2006). The protective effects of Hibiscus sabdariffa extract on CCl4-induced liver fibrosis in rats. Food and Chemical Toxicology, 44(3), 336-343. https://doi.org/https://doi.org/10.1016/j.fct.2005.08.003
Matešić, N., Jurina, T., Benković, M., Panić, M., Valinger, D., Gajdoš Kljusurić, J., & Jurinjak Tušek, A. (2021). Microwave-assisted extraction of phenolic compounds from Cannabis sativa L.: optimization and kinetics study. Separation Science and Technology, 56(12), 2047-2060. https://doi.org/10.1080/01496395.2020.1804938
Meftahizadeh, H., Ebadi, M.-T., Baath, G. S., & Ghorbanpour, M. (2022). Variation of morphological and phytochemical traits in Roselle (Hibiscus sabdariffa L.) genotypes under different planting dates. Acta Ecologica Sinica, 42(6), 616-623. https://doi.org/https://doi.org/10.1016/j.chnaes.2021.04.011
Ochoa-Velasco, C. E., & Ruiz, L., II. (2019). Mass transfer modeling of the antioxidant extraction of roselle flower (Hibiscus sabdariffa). Journal of food science and technology, 56(2), 1008-1015. https://doi.org/10.1007/s13197-018-03567-8
Omobuwajo, T. O., Sanni, L. A., & Balami, Y. A. (2000). Physical properties of sorrel (Hibiscus sabdariffa) seeds. Journal of Food Engineering, 45(1), 37-41. https://doi.org/https://doi.org/10.1016/S0260-8774(00)00039-X
Park, S.-H., & Kim, J.-H. (2018). Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-Xylenol onto Activated Carbon. Biotechnology and Bioprocess Engineering, 23(5), 541-549. https://doi.org/10.1007/s12257-018-0259-8
Peleg, M. (1988). An Empirical Model for the Description of Moisture Sorption Curves. Journal of Food Science, 53(4), 1216-1217. https://doi.org/https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
Rakotondramasy-Rabesiaka, L., Havet, J.-L., Porte, C., & Fauduet, H. (2010). Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Separation and Purification Technology, 76(2), 126-131. https://doi.org/https://doi.org/10.1016/j.seppur.2010.09.030
Rose, P. M., & Kintner, R. C. (1966). Mass transfer from large oscillating drops. AIChE Journal, 12(3), 530-534. https://doi.org/https://doi.org/10.1002/aic.690120325
Sabbaghi, H., Ziaiifar, A. M., & Kashani-Nejad, M. (2017). Mechanical study for texture degradation of potato strip during frying process. Iranian Food Science and Technology Research Journal, 13(1), 92-104. https://doi.org/10.22067/ifstrj.v1395i0.48350 (in Persian)
Sabbaghi, H., Ziaiifar, A. M., & Kashani-Nejad, M. (2018a). Degradation kinetic of vitamin C (L-ascorbic acid) during simultaneous infrared dry-blanching and dehydration of apple slices with intermittent heating method. Iranian Food Science and Technology Research Journal, 14(5), 789-802. https://doi.org/10.22067/ifstrj.v14i5.69053 (in Persian)
Sabbaghi, H., Ziaiifar, A. M., & Kashani-Nejad, M. (2018b). Fractional conversion modeling of color changes in apple during simultaneous dry-blanching and dehydration process using intermittent infrared irradiation. Iranian Food Science and Technology Research Journal, 14(2), 383-397. https://doi.org/10.22067/ifstrj.v0i0.62293 (in Persian)
Sabbaghi, H., Ziaiifar, A. M., & Kashaninejad, M. (2018). Modeling of Mass Transfer in the Drying Process of Apple Slices Using Infrared Irradiation with Intermittent Heating Method. Research and Innovation in Food Science and Technology, 7(1), 75-88. https://doi.org/10.22101/jrifst.2018.05.19.716 (in Persian)
Sant’Anna, V., Brandelli, A., Marczak, L. D. F., & Tessaro, I. C. (2012). Kinetic modeling of total polyphenol extraction from grape marc and characterization of the extracts. Separation and Purification Technology, 100, 82-87. https://doi.org/https://doi.org/10.1016/j.seppur.2012.09.004
Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., Wu, Y., & Canada, A.-f. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution.
Simeonov, E., Tsibranska, I., & Minchev, A. (1999). Solid–liquid extraction from plants-experimental kinetics and modelling. Chemical Engineering Journal, 73(3), 255-259. https://doi.org/https://doi.org/10.1016/S1385-8947(99)00030-3
Sindi, H. A., Marshall, L. J., & Morgan, M. R. A. (2014). Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chemistry, 164, 23-29. https://doi.org/https://doi.org/10.1016/j.foodchem.2014.04.097
Tao, Y., Zhang, Z., & Sun, D.-W. (2014). Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrasonics Sonochemistry, 21(4), 1461-1469. https://doi.org/https://doi.org/10.1016/j.ultsonch.2014.01.029
Wrolstad, R. E. (2004). Anthocyanin Pigments—Bioactivity and Coloring Properties. Journal of Food Science, 69(5), C419-C425. https://doi.org/https://doi.org/10.1111/j.1365-2621.2004.tb10709.x
Xu, D.-P., Zheng, J., Zhou, Y., Li, Y., Li, S., & Li, H.-B. (2017). Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chemistry, 217, 552-559. https://doi.org/https://doi.org/10.1016/j.foodchem.2016.09.013
Yedhu Krishnan, R., Neelesh Chandran, M., Vadivel, V., & Rajan, K. S. (2016). Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula. Separation and Purification Technology, 170, 224-233. https://doi.org/https://doi.org/10.1016/j.seppur.2016.06.039
CAPTCHA Image
دوره 11، شماره 4
بهمن 1401
صفحه 437-450
  • تاریخ دریافت: 14 تیر 1401
  • تاریخ بازنگری: 22 شهریور 1401
  • تاریخ پذیرش: 28 شهریور 1401